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Basic Research Questions

What can LLMs do?
What can't LLMs do?
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ABSTRACT

Characterizing the computational power of neural network architectures in terms
of formal language theory remains a crucial line of research, as it describes lower
and upper bounds on the reasoning capabilities of modern Al. However, when em-
pirically testing these bounds, existing work often leaves a discrepancy between
experiments and the formal claims they are meant to support. The problem is that
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Definition: Alphabet

An alphabet is a non-empty finite set of elements called symbols.

Examples:

e {0,1}

o {0,1,#}

e the set of all Unicode characters

e {above, accept, admire, ..., zebra, zebras, ., ? }
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Definition: String

A string is finite sequence of symbols from an alphabet.
Examples:

e 01011
e 01011#01011
e the salamanders don't amuse my newt .
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Definition: Language

A language or formal language is a (possibly infinite) set of strings.

Examples:

o {# 0#0,1#1,00#00,01#01,10#10,11#11, ...}
={w#w |w € {0, 1}" }

e {the salamanders don't amuse my newt .,

our zebra doesn't applaud the unicorn .,
some newt doesn't comfort the ravens . ,

)
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Membership in a Language

{wi#w |w € {0, 1}*}
v 011#011
X011#010
X #0##10
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Natural Language as a Formal Language

v/ your orangutans giggle

X orangutans giggle your

v/ your vulture comforts our peacocks by our newts

X peacocks by comforts newts our your our vulture

/' some newts that our zebra amuses wait

X some newts that our zebra amuses waits
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Definition: Recognizer
A recognizer is any computing device that reads a string as input and produces a
decision to accept or reject it as output.

A recognizer recognizes the language of strings that it accepts.

"Recognizer”

/ accept

string —»1 Computer —» or

X reject
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Recognizers

"Recognizer"

"some newts that our

. —>
zebra amuses wait" Computer
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Recognizers

"Recognizer"

"some newts that our

zebra amuses wait Computer
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Recognizers

"Recognizer”

"some newts that our

. —> —>
zebra amuses waits" Computer X
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Chomsky Hierarchy

o

Regular
(Constant Memory)

/
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Chomsky Hierarchy

/ English?
/ C Syntax

o

Regular
(Constant Memory)

>/ E-mail Address Format

/
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Chomsky Hierarchy

-

Context-Free
(Stack Memory)

— |

Regular
(Constant Memory)

English?
>C C Syntax

| — E-mail Address Format
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7
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Chomsky Hierarchy

/ Swiss German?
English?
/ Context-Free >(
(Stack Memory) — C Syntax

— |

E-mail Address Format
Regular —

(Constant Memory)

> 7
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Chomsky Hierarchy

Swiss German?
/ Context-Sensitive
(Linear Tape Memory) .
__— English?
/ Context-Free >T
(Stack Memory) — C Syntax

____—— E-mail Address Format

Regular 3\/’“
(Constant Memory)

N—
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Chomsky Hierarchy

Decidable

Context-Sensitive

~

Context-Free
(Stack Memory)

\

Regular
(Constant Memory)

Swiss German?

— English?

__— C Syntax

|___—— E-mail Address Format

\\\k

%)
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Chomsky Hierarchy

fewer
restrictions
on memory

Decidable

Context-Sensitive

~

Context-Free
(Stack Memory)

\

Regular
(Constant Memory)

Swiss German?

— English?

__— C Syntax

|___—— E-mail Address Format

\\\k
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Definition: Class

A class or language class is a (possibly infinite) set of languages.
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Chomsky Hierarchy

777

/ Recognizable by
LLM/Transformer

~

/

Decidable

Context-Sensitive

~

Context-Free

/

Regular

— |

Swiss German?

— English?

__— C Syntax

|___—— E-mail Address Format

\\\k

%)
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Transformer Language Model

above 0.01 0.03 0.00 0.02 0.01 0.03 0.00 0.02 0.01
accept 0.02 0.01 0.01 0.00 0.02 0.01 0.01 0.00 0.00
amuses  0.00 0.02 0.01 0.01 0.00 0.56 0.02 0.01 0.01

EOS 0.01 0.00 0.01 0.02 0.01 0.00 0.01 0.02 0.96

TN L

BOS some newts that our zebraamuses wait
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Transformer Recognizer

0.97

BOS some newts that our zebraamuses wait
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Chomsky Hierarchy

777

/ Recognizable by \

Transformer
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Chomsky Hierarchy

—

/ Recognizable by x\-

Transformer

o

Decidable

Context-Sensitive

Context-Free

Yang et al. (2024)

/ Star-Free \

Swiss German?

— English?

__— C Syntax

|___—— E-mail Address Format

N
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Chomsky Hierarchy

/ Decidable Swiss German?
Context-Sensitive _
/ __— English?

Context-Free |
| — C Syntax
______ N . |
/ Recognizable by \ ---- /_/_ _____ Regular 3(______,/ E-mail Address Format
Transformer | | | | [ — ~===-.
e hard attention /" Star-Free \

strict masking
e no positional
encodings

- Yang et al. (2024) /\\ KK j////
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Transformer Expressivity

ﬁecognizable by Simplified Transformer\

/ Recognizable by Real Transformer \

/
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Transformer Expressivity

ﬁecognizable by Simplified Transformer\

/ Recognizable by Real Transformer \
ﬂ?eachable by Gradient DescerN

——————————————————

- Often Reached by ™,
Gradient Descent

—— o e e e e o e
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Purpose of This Work

How Do We Test Hypotheses
about Neural Networks as
Recognizers?
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Our Solution

Train Neural Networks as
Recognizers

(Binary Classifiers of Strings)
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Basic Approach

e Get a dataset of strings labeled accept (1) or reject (0)

e The network outputs a probability of acceptance

e Use an objective function that maximizes the accept probability for accept and
minimizes it for reject

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

33



Disconnect between Experiments and Theory

e Generating negative examples (strings labeled reject) is hard
e Positive-only tasks
o Language modeling
o Sequence-to-sequence transduction
e (Can't convert a neural LM to a recognizer
o How do you distinguish between probability of EOS that is just close to 0
or should be exactly 07
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Published as a conference paper at ICLR 2023

NEURAL NETWORKS AND THE CHOMSKY HIERARCHY

Grégoire Delétang*! Anian Ruoss*!' Jordi Grau-Moya' Tim Genewein' Li Kevin Wenliang'

Elliot Catt' Chris Cundy'? Marcus Hutter' Shane Legg' Joel Veness' Pedro A. Ortega’

ABSTRACT

Reliable generalization lies at the heart of safe ML and Al. However, understanding
when and how neural networks generalize remains one of the most important
unsolved problems in the field. In this work, we conduct an extensive empirical
study (20 910 models, 15 tasks) to investigate whether insights from the theory of
computation can predict the limits of neural network generalization in practice.
We demonstrate that grouping tasks according to the Chomsky hierarchy allows
us to forecast whether certain architectures will be able to generalize to out-of-
distribution inputs. This includes negative results where even extensive amounts
of data and training time never lead to any non-trivial generalization, despite
models havin sufﬁc1ent capacity to fit the training data perfectlv. Our results
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Bridging the Gap

Languages

Theory

String-to-String Functions

Experiments
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Bridging the Gap

Languages String-to-String Functions

Not Fully Worked Out
Theory >

Experiments
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Bridging the Gap

Languages

Theory

This Talk

String-to-String Functions

Experiments
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Research Questions

e How powerful is each NN architecture?
e Do our results change if we do recognition instead of string-to-string?
e \What training objectives work best?
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Languages
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Languages

Table 1: Formal languages tested in this paper and included in FLaRe. For each language, we show
the language class that it belongs to: regular (R), deterministic context-free (DCF), context-free
(CF), or context-sensitive (CS). Each language does not belong to the previous language classes.
Let ¢, (w) be the number of times substring u occurs in w, let w;_,, be w with its i™ symbol
replaced with a, and let () be the little-endian binary encoding of € Z>(. See App. E for details.

Class Language Description Example String
R Even Pairs {w € {0,1}" | cor(w) + cro(w) is even} 210110
= {aua |a € {0,1},u € {0,1}"} U{e, 0,1}
Repeat 01 {(01)" | n >0} 010101
Parity {w e {0,1}" | &1 (w) is odd} 11011001
Cycle Navigation A sequence of left (<), right (>), stay (=) moves on a 5- >>=<>2
position cycle, then the final position (0-indexed).
Modular Arithmetic Expression involving {+, —, x} and {0,...,4}, then = 1-3x2=1
the result mod 5. No operator precedence.
Dyck-(2, 3) Strings of balanced brackets with 2 bracket typesanda [ ([1)JO
. maximum depth of 3.
Bigger Language First {1w | we {e,1}"} 100010
Classes DCF Majority {w e {0,1}" | &1(w) > co(w)} 101101
Stack Manipulation A stack from bottom to top, a sequence of push and pop ~ @11[POP]=10
operations, and the resulting stack from top to bottom.
Marked Reversal {wHw® | w € {0,1}*} 001#100
CF  Unmarked Reversal {ww® | w e {0,1}"} 001100
CS  Marked Copy {whw | w € {0,1}"} 001#001
Missing Duplicate {(ww)is_ | w e {0,1}",1 <1 < 2Jw|, (ww); =1} 1_011101
v Odds First {ai1by ---anbnattay - --anaby --- by, | 01010=00011
n > 0;ai,b; € {0,1};a € {0,1,2}}
Binary Addition {(z)0'+(y)0’=(x + y)0* | x,y,i,j,k € Z>0} 110+01=10100
Binary Multiplication  {(z)0*x(y)@’=(zy)0" | z,y,1i,j. k € Z>o} 110x0100=011

Compute Sqrt
Bucket Sort

{(@)0'=((VZ|)07 | 2,1, ] € Z3o)
Sequence of integers in {1,...,5}, then # and the
sorted sequence.

01010=1100
45134#13445
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Dataset Generation
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Positive examples of w#w

v/ 01011#0101 1

v 110#110
v #
v 100100#100100
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Negative Examples of w#w

v 01011#0101 1
v 110#110

v #

v 100100#100100
X #0#10##010#
XO01#1#00

X #11#0#0
01404

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

44



Negative Examples of w#w

v 01011#0101 1
v 110#110

v #

v 100100#100100
X #0#10##010#
XO01#1#00

X #11#0#0
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Negative Examples of w#w

v 01011#0101 1
X01011#0001 1

v 110#110

X 1100#110

v/ 100100#100100
X10010#100100
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Sampling Datasets

e Our method only needs two algorithms
a. Sample a positive string with length in the range [n
b. Membership testing -- is a string in the language?
e Balanced label distribution: 50% positive, 50% negative
e Not specific to any language class

N ]
min max
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Negative Sampling

e Pick a length n uniformly from[n_ .. n_ ]
e Propose random strings, test whether they are in the language, reject positives
o 50% chance: Generate a random string of symbols of length n
m Tend to be too easy
o 50% chance: Generate a positive example of length n, apply K random
edits to it
m Adversarial
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Architectures and
Training Objectives
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Three Architectures

e Transformer
o Causally masked (don't attend to later positions)
o Sinusoidal positional encodings
o Pre-norm instead of post-norm
e Simple RNN
o tanh activation
o learned initial state
o LSTM
o decoupled input and forget gates
o learned initial state

Every model has 5 layers and about 64k parameters.
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Transformer

THEE

BOS %) 1 %) 1 1 # %) 1 %) 1
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cross-entropy

p(w € L)

0)
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Simple RNN and LSTM

loss
T binary

cross-entropy

p(w € L)
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Gradient Problems

loss
T binary

cross-entropy

p(w € L)

1T O

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

53



Language Modeling

9 1 0 1 1 # 0 1 0 1 1 EOS

cross-entropy

e — :/7/
————

e ——
e e ——— —
— —— —

BOS %) 1 %) 1 1 # %) 1 0 1 1
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Next Symbol Prediction

{0,1,#}{0,1,#}{0,1,#}{0,1,#}{0, 1, #}{0, 1, #} {0} {1} {0} {1} {1  {EOS}
binary
cross-entropy

—

e —————
/_//-/fé'?_//

BOS %) 1 %) 1 1 # %) 1 %) 1 1
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Next Symbol Prediction

0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.01 0.99 0.01 0.01 0.01
0.99 0.99 0.99 0.99 0.99 0.99 0.01 0.99 0.01 0.99 0.99 0.01
0.99 0.99 0.99 0.99 0.99 0.99 0.01 0.01 0.01 0.01 0.01 0.01

Eos 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.99
binary
cross-entropy

H RO

————

LLI LI ITTTT

%?—_?//

BOS %) 1 %) 1 1 # %) 1 %) 1 1
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Multi-Task Learning

Loss = Rec. Loss + )\LM x LM Loss + )\NS x NS Loss

e \We always include the Rec. Loss term
e We test all 4 combinations of {with, without} x {LM Loss term, NS Loss term}
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Dataset Splits

e Training data: 10k examples with lengths in [0, 40]
e Test data: 5,010 examples with lengths in [0, 500]

o Average of 10 examples per length

o Emphasis on length generalization -- does it learn the algorithm?
e Two variations for validation data (next slides)
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Testing Expressivity

e Does a parameter setting exist at all?
e Long validation data set: 1k examples with lengths in [0, 80]
e Encourages model to length-generalize during training via
o learning rate schedule
o early stopping
e Report max test accuracy of 10 random seeds among all 4 loss functions

Training 40

Validation msess—— 80

Test
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Testing Inductive Bias

What is the architecture's prior over languages?

How does the network length-generalize without any hints during training?
Short validation data: 1k examples with lengths in [0, 40]

Report mean test accuracy of 10 random seeds of best loss function

Training 40

Validation s 40

Test

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments
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Bigger Language

Results

RNN and LSTM outperform Transformer; RNN is surprisingly good

Inductive Bias Expressivity
Language & RNN LSTM Tf RNN LSTM
/~ Even Pairs 099,001 0.60+020 0.831020 1.00 1.00 1.00
Repeat 01 0.723&0.()9 0-97i0.()7 0.97j:()_()7 0.86 1.00 1.00
Parity 0.56+003 0.714024 0901020 0.60 1.00 1.00
RegLIIar < CyClC Navigation 0.84:t()_()5 0.93:}:()_()1 0.902{:().()4 0.93 0.93 0.93
Modular Arithmetic 0.691011 1.001000 0981003 0.88 1.00 1.00
$ Dyck-(2, 3) 0.701009 0951005 0911010 0.82 1.00 0.98
% \_ First 098004 0.80+024 094014 1.00 1.00 1.00
@© Deterministic Majority 09741004 0904003 0.95+004 1.00 0.95 1.00
O Context-Free < Stack Manipulation 0.66+014 084+016 0.751017 0.87 0.93 0.91
Marked Reversal 0641012 0.704018 074017 0.87 095 0.95
Context-Free -< Unmarked Reversal 0.58+4003 0.72+008 0.761001 0.63 0.81 0.88
f Marked COpy 0.631().11 0.76i(),15 0.69313()_15 0.86 0.95 0.95
v Missing Duplicate 0.661()_()8 0.82:t()_1() 0.85:1:()_()7 0.86 0.95 0.94
Odds First 0.591011 0.791015 0.671014 0.86 0.95 0.96
Context-Sensitive < Binary Addition 0.64+013 0.741012 0741012 0.88 092  0.92
Binary Multiplication  0.70+011  0.74+013  0.78+4012 092 0.92 0.92
Compute Sqrt 0.67+010 0.78+012 0.841007 086 0.89 0.89
\_. Bucket Sort 0-63:t().08 0.84:}:0_()9 0.69:}:()_13 0.88 0.96 0.83
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(a) Transformer (b) Simple RNN (c) LSTM

Figure 1: Summary of our empirical expressivity results. Dots represent languages, which are listed
in Table 1. A filled dot means that the architecture exhibits perfect length generalization (see Table 2
under “Expressivity”). R = regular, DCF = deterministic context-free, CF = context-free, CS =
context-sensitive. All architectures are limited to regular languages and the DCF language Majority.
The transformer is strictly less expressive than the RNN/LSTM on the languages we tested.
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Results

Consistency in rankings between Inductive Bias and Expressivity

Regular <

.
Deterministic
Context-Free
Context-Free <_
r

Bigger Language
Classes

\/

Context-Sensitive <

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

Inductive Bias Expressivity
Language Tf RNN LSTM A B g RNN LSTM
Even Pairs 0.99. 001 0.60+020 0.83:1022 1.00 1.00 1.00
Repeat 01 0.721000 0971007 0971007 0.86 1.00 1.00
Parity 0.56+003 0.711024 090020 0.60 1.00 1.00
Cycle Navigation 08441005 0931001 0901904 093 0.93 0.93
Modular Arithmetic 0.691011 1.001000 0.98+003 0.88 1.00 1.00
Dyck-(2, 3) 0.701000 0951005 0911010 0.82 1.00 0.98
First 098,004 0.801024 094014 1.00 1.00 1.00
Majority 0.97 1004 0904003 0.95+004 1.00 0.95 1.00
Stack Manipulation 0.661014 0841016 0.751017 0.87 0.93 0.91
Marked Reversal 0641012 0.701018 0.741017 0.87  0.95 0.95
Unmarked Reversal 0.58+0.03 0.63 0.81 0.88

Binary Multiplication

g Bucke Srt

0.631008  0.84.000




Results

Transformers do well on low-sensitivity and badly on high-sensitivity (Hahn &
Rofin, 2024)

Inductive Bias Expressivity

Language B RNN LSTM Tf RNN LSTM
/" | Even Pairs 0.99_ 0.60+020 0.83+0,> 1.00 1.00 1.00
Repeat 01 0.721009 0971007 0971007 0.86 1.00 1.00
o 0.5 .60  1.00 1.00

(®)) ReglJIar '< yClC Navigation 0.84 105 J340.01 0.900.04 . 5 A

g Modular Arithmetic 0.691011 1.001000 0981003 0.88 1.00 1.00
O) $ Dka-(Q, 3) 0.7020_()9 0.9520_()5 0.91;0,10 0.82 1.00 0.98
% 9) \ First 0.&0,04 0.8020_24 0.94_:t(),14 1.00 1.0(_) 1.00
— © Deterministic Majority 0.97 004 0901003 0951004 1.00 0.95 1.00
% @ Context-Free < Stack Manipulation 0.661014 0841016 0.751017 0.87 0.93 0.91
3 Marked Reversal 0.641012 0.70+018 0.741017 0.87  0.95 0.95
o0 Context-Free <<_ Unmarked Reversal ~ 0.58+003 0.72400s 0.76:001 0.63 081  0.88
~~ Marked Copy 0.631011 0.761015 0.691015 0.86 0.95 0.95
v Missing Duplicate 0.66+00s 0.82+1010 0.851007 0.86 0.95 0.94
Odds First 0.594011 0.79+015 0.671014 0.86 0095 0.96
Context-Sensitive < Binary Addition 0.64+013 0.741012 0741012 0.88 092  0.92
Binary Multiplication  0.70+011  0.74+013  0.78+012 092 0.92 0.92
Compute Sql't 0.67+010 0.78+0.12 0.84_( 7 0.86 0.89 0.89
\_. Bucket Sort 0.631908 0841009 0.694013 0.88 0.96 0.83
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Low-Sensitivity

Even Pairs (begins and ends with same bit)
010110
1011

First (begins with 1)
100101

11011

10
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High-Sensitivity

Repeat 01 (O 1 repeated any number of times)
01010101
0101

Parity (odd number of 1's)
01011

1011

0001
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Results

Transformers do well on low-sensitivity and badly on high-sensitivity (Hahn &
Rofin, 2024)

Inductive Bias Expressivity

Language B RNN LSTM Tf RNN LSTM
/" | Even Pairs 0.99_ 0.60+020 0.83+0,> 1.00 1.00 1.00
Repeat 01 0.721009 0971007 0971007 0.86 1.00 1.00
o 0.5 .60  1.00 1.00

(®)) ReglJIar '< yClC Navigation 0.84 105 J340.01 0.900.04 . 5 A

g Modular Arithmetic 0.691011 1.001000 0981003 0.88 1.00 1.00
O) $ Dka-(Q, 3) 0.7020_()9 0.9520_()5 0.91;0,10 0.82 1.00 0.98
% 9) \ First 0.&0,04 0.8020_24 0.94_:t(),14 1.00 1.0(_) 1.00
— © Deterministic Majority 0.97 004 0901003 0951004 1.00 0.95 1.00
% @ Context-Free < Stack Manipulation 0.661014 0841016 0.751017 0.87 0.93 0.91
3 Marked Reversal 0.641012 0.70+018 0.741017 0.87  0.95 0.95
o0 Context-Free <<_ Unmarked Reversal ~ 0.58+003 0.72400s 0.76:001 0.63 081  0.88
~~ Marked Copy 0.631011 0.761015 0.691015 0.86 0.95 0.95
v Missing Duplicate 0.66+00s 0.82+1010 0.851007 0.86 0.95 0.94
Odds First 0.594011 0.79+015 0.671014 0.86 0095 0.96
Context-Sensitive < Binary Addition 0.64+013 0.741012 0741012 0.88 092  0.92
Binary Multiplication  0.70+011  0.74+013  0.78+012 092 0.92 0.92
Compute Sql't 0.67+010 0.78+0.12 0.84_( 7 0.86 0.89 0.89
\_. Bucket Sort 0.631908 0841009 0.694013 0.88 0.96 0.83
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Bigger Language

Results

Accuracy ceilings

Inductive Bias Expressivity
Language Tf RNN LSTM Tf RNN LSTM
/~ Even Pairs 099001 0.60+020 0.831022 1.00 1.00 1.00
Repeat 01 0.724000 0971007 0971007 0.86 1.00 1.00
Parity 0.56+()Qz O.71+024 0.90-» 0.60 1.00 1.00 |
Regular < [Cycle Navigation 0.84:00s 0.93.00,  0.90.00: 093 093 _ 0.93
Modular Arithmetic 0.69+1011 1.001000 0981003 0.88 1.00 1.00
$ Dyck-(2, 3) 0.70+000 09541005 0911010 0.82 1.00 0.98
9) \_ First 098,004 0.801024 094014 1.00 1.00 1.00
®© Deterministic Majority 0.97 004 0.90+003 0.95+004 1.00 0.95 1.00
@) Context-Free < Stack Manipulation 0.66+014 0841016 0.75+017 0.87 093 0.91
Marked Reversal 0641012 0.704018 074017 0.87 095 0.95
Context-Free -< Unmarked Reversal 0.58+4003 0.72+008 0.761001 0.63 0.81 0.88
~~ Marked Copy 0.631011  0.76+015 0.694015 0.86 0.95 0.95
v Missing Duplicate 0.66+00s 0.82+1010 0.851007 0.86 0.95 0.94
Odds First 0.594001  0.794015  0.671054 0.86_ 0.95 0.96
Context-Sensitive < Binary Addition 0.64 0.74+010  0.74.95>  0.88 092  0.92
Binary Multiplication . &
Compute Sqrt 0.671050 0.78:010  0.84.99; 0.86  0.89 0.89
\_. Bucket Sort 0.63:t()_()3 0.84:t()_()9 0.69i()_13 0.88 0.96 0.83
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Cycle Navigation
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Cycle Navigation
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Cycle Navigation

e |[ncreasing model size doesn't help
e [ncreasing training data size doesn't help
e Increasing adversarial negative examples doesn't help
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Binary Arithmetic

Small digits come first

Addition
0010+110=1110
Multiplication
0100*001 =000"1
Square Root
001=01
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Recognition (Ours) vs. Seq-to-Seq (DeepMind)

e Transformer struggles on Parity
e Their RNN/LSTM solved Cycle Navigation, ours did not
e Our RNN performs better than theirs (slightly different architectures)
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Bigger Language

Recognition (Ours) vs. Seq-to-Seq (DeepMind)

Different model rankings on many languages

Inductive Bias Expressivity
Language & RNN LSTM Tf RNN LSTM
/~ Even Pairs 099001 0.60+020 0.831022 1.00 1.00 1.00
Repeat 01 0.724009 09741007 0.97+007 0.86 1.00 1.00
Parity 0.56+003 0.714024 0901020 0.60 1.00 1.00
RegLIIar < CyClC Navigation 0.84:t()_()5 0.93:}:0.()1 0.90:}:()_()4 0.93 0.93 0.93
Modular Arithmetic 0.691011 1.001000 0.98+003 0.88 1.00 1.00
$ Dka-(Q, 3) 0.70j:()_()() 0-95:t0.05 0.91 +0.10 0.82 1.00 0.98
9) \_ First 098,004 0.80+024 0941014 1.00 1.00 1.00
@© Deterministic Majority 09741004 0904003 0.95+004 1.00 0.95 1.00
O Context-Free < Stack Mgnipulation 0.66+014 084+016 0.751017 0.87 0.93 0.91
Marked Reversal 0.6410.12 104018 A410.17 0.87 0.95 0.95
Context-Free '{ Unmarked Reversal D8+40.03 124008 J6+001 0.63 0.81 0.88
f Marked COpy 0.631().11 0.76i()_15 0.69:i:().15 0.86 0.95 0.95
v Missing Duplicate 0-66i().()8 0.82i()_1() 0.85:()_07 086 0.95 094
Odds First 0.594011 0.79+015 0.67+014 ] 0.86 0.95 0.96
Context-Sensitive < [Binary Addition 0.64+013 0.74+01> 0.74+010 | 0.88 092  0.92
Binary Multiplication  0.70+0.11  0.744013  0.78 1012 | 0.92  0.92 0.92
Compute Sqgrt 0.671010 0.78:01» 0.84 0.86 0.89 0.89
\ Bucket Sort —+0.08 4009 4013 0.88 0.96 0.83
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Performance vs. Edit Distance
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Figure 2: Recognition cross-entropy (lower is better) as a function of edit distance for the trans-
former model shown under “Expressivity” in Table 2, on a separate dataset of 50 negative examples
in the length range [0, 500]. The dashed lines show log 2, the threshold for incorrect predictions.
Despite being trained on a large proportion of negative examples with low edit distance, the trans-
former still struggles on examples that resemble positive examples.
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Performance vs. Length
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Performance vs. Length
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Which Loss Function Is Best?

Table 3: The best loss functions, corresponding to the accuracy scores reported in Table 2. “R” =
recognition; “LM” = language modeling; “NS” = next symbol prediction. No single loss function
consistently results in the best performance; the most frequent winner is just R.

Inductive Bias

Expressivity

Language Tf RNN LSTM 1§ RNN LSTM
Even Pairs R R+LM+NS R R R+NS R
Repeat 01 R R+NS R R R R
Parity R+NS R+NS R+NS R+NS R+LM R
Cycle Navigation R+LM+NS R R R R R
Modular Arithmetic R R R R+NS R R
Dyck-(2, 3) R+LM R+LM+NS R R+NS R+NS R+NS
First R+NS R+LM R+LM R R R
Majority R+LM R+NS R+NS R+LM R+LM+NS R+LM+NS
Stack Manipulation R R+NS R R+LM+NS R R+LM
Marked Reversal R+NS R+NS R R+LM R+LM R+LM
Unmarked Reversal R R+NS R+NS R R+NS R+NS
Marked Copy R+NS R+LM R R+NS R R
Missing Duplicate R+LM+NS R R R+LM+NS R+LM+NS R+LM
Odds First R R R R+LM+NS R R+LM+NS
Binary Addition R R+NS R R+LM R+NS R+NS
Binary Multiplication R+NS R R+NS R+NS R+LM R+NS
Compute Sqrt R R R R R R
Bucket Sort R R+LM+NS R R+NS R+NS R+LM+NS
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What Did We Learn?

e Transformers, simple RNNs, and LSTMs rank very low in the Chomsky
hierarchy
o If true, they cannot make grammaticality judgments with 100% accuracy
e Simple RNNs and LSTMs outperform the transformer
e Using just a simple recognition objective is usually effective; auxiliary training
objectives help in isolated cases but not uniformly
e Consistency between inductive bias and expressivity
e Results do change from the DeepMind paper
o e.g., nothing is able to solve Cycle Navigation
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Thank You

Questions?
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