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About Me

● Postdoc at ETH Zürich with Ryan 
Cotterell

● Formerly: PhD student at University 
of Notre Dame with David Chiang

● Interests
○ Natural language processing
○ Formal language theory
○ Neural networks
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Basic Research Questions

What can LLMs do?
What can't LLMs do?
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My Collaborators
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Definition: Alphabet

An alphabet is a non-empty finite set of elements called symbols.
Examples:
● { 0, 1 }
● { 0, 1, # }
● the set of all Unicode characters
● { above, accept, admire, ..., zebra, zebras, ., ? }
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Definition: String

A string is finite sequence of symbols from an alphabet.
Examples:
● 0 1 0 1 1
● 0 1 0 1 1 # 0 1 0 1 1
● the salamanders don't amuse my newt .
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Definition: Language

A language or formal language is a (possibly infinite) set of strings.
Examples:
● { #, 0 # 0, 1 # 1, 0 0 # 0 0, 0 1 # 0 1, 1 0 # 1 0, 1 1 # 1 1, ... }

= { w#w | w ∈ {0, 1}* }
● { the salamanders don't amuse my newt . ,

  our zebra doesn't applaud the unicorn . ,
  some newt doesn't comfort the ravens . ,
  ... }
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Membership in a Language
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{ w#w | w ∈ {0, 1}* }

✓ 0 1 1 # 0 1 1

✗ 0 1 1 # 0 1 0

✗ # 0 # # 1 0
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Natural Language as a Formal Language

✓ your orangutans giggle

✗ orangutans giggle your

✓ your vulture comforts our peacocks by our newts

✗ peacocks by comforts newts our your our vulture

✓ some newts that our zebra amuses wait

✗ some newts that our zebra amuses waits
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A recognizer is any computing device that reads a string as input and produces a 
decision to accept or reject it as output.
A recognizer recognizes the language of strings that it accepts.

Definition: Recognizer
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Computerstring
✓

"Recognizer"

✗
or

accept

reject
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Recognizers

12

Computer"some newts that our 
zebra amuses wait"

"Recognizer"
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Recognizers

13

Computer"some newts that our 
zebra amuses wait" ✓

"Recognizer"
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Recognizers
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Computer"some newts that our 
zebra amuses waits" ✗

"Recognizer"
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Chomsky Hierarchy
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Regular
(Constant Memory)
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Chomsky Hierarchy

16

Regular
(Constant Memory)

E-mail Address Format

English?
C Syntax
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Context-Free
(Stack Memory)

Chomsky Hierarchy
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Regular
(Constant Memory)

E-mail Address Format

English?
C Syntax
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Context-Free
(Stack Memory)

Chomsky Hierarchy
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Regular
(Constant Memory)

E-mail Address Format

English?
C Syntax

Swiss German?
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Context-Sensitive
(Linear Tape Memory)

Context-Free
(Stack Memory)

Chomsky Hierarchy
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Regular
(Constant Memory)

E-mail Address Format

English?
C Syntax

Swiss German?
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Decidable

Context-Sensitive

Context-Free
(Stack Memory)

Chomsky Hierarchy
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Regular
(Constant Memory)

E-mail Address Format

English?
C Syntax

Swiss German?
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Decidable

Context-Sensitive

Context-Free
(Stack Memory)

Chomsky Hierarchy
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Regular
(Constant Memory)

E-mail Address Format

English?
C Syntax

Swiss German?

fewer 
restrictions 
on memory
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Definition: Class

A class or language class is a (possibly infinite) set of languages.
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Chomsky Hierarchy
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Recognizable by 
LLM/Transformer

???

Decidable

Context-Sensitive

Context-Free

Regular
E-mail Address Format

English?
C Syntax

Swiss German?
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Transformer Language Model
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some newts that our zebra amuses wait .BOS
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Transformer Recognizer
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some newts that our zebra amuses wait .BOS

0.97
probability of 
acceptance
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Chomsky Hierarchy
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Recognizable by 
Transformer

???

Decidable

Context-Sensitive

Context-Free

Regular
E-mail Address Format

English?
C Syntax

Swiss German?
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Chomsky Hierarchy
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Decidable

Context-Sensitive

Context-Free

Regular
E-mail Address Format

English?
C Syntax

Swiss German?

Yang et al. (2024)

Star-Free

Recognizable by 
Transformer



Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

Chomsky Hierarchy
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Decidable

Context-Sensitive

Context-Free

Regular
E-mail Address Format

English?
C Syntax

Swiss German?

Yang et al. (2024)

Star-Free

Recognizable by 
Transformer

● hard attention
● strict masking
● no positional 

encodings
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Transformer Expressivity
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Recognizable by Simplified Transformer

Recognizable by Real Transformer



Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

Transformer Expressivity
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Recognizable by Simplified Transformer

Recognizable by Real Transformer

Reachable by Gradient Descent

Often Reached by 
Gradient Descent
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Purpose of This Work

How Do We Test Hypotheses 
about Neural Networks as 

Recognizers?
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Our Solution

Train Neural Networks as 
Recognizers

(Binary Classifiers of Strings)
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Basic Approach

● Get a dataset of strings labeled accept (1) or reject (0)
● The network outputs a probability of acceptance
● Use an objective function that maximizes the accept probability for accept and 

minimizes it for reject
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Disconnect between Experiments and Theory

● Generating negative examples (strings labeled reject) is hard
● Positive-only tasks

○ Language modeling
○ Sequence-to-sequence transduction

● Can't convert a neural LM to a recognizer
○ How do you distinguish between probability of EOS that is just close to 0 

or should be exactly 0?
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Bridging the Gap

36

Languages

Theory

Experiments

String-to-String Functions
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Bridging the Gap

37

Languages

Theory

Experiments

Not Fully Worked Out

String-to-String Functions
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Bridging the Gap
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Languages

Theory

Experiments
This Talk

String-to-String Functions
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Research Questions

● How powerful is each NN architecture?
● Do our results change if we do recognition instead of string-to-string?
● What training objectives work best?
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Languages

40
40
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Languages

41

Bigger Language 
Classes
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Dataset Generation

42
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Positive examples of w#w

✓ 0 1 0 1 1 # 0 1 0 1 1

✓ 1 1 0 # 1 1 0

✓ #

✓ 1 0 0 1 0 0 # 1 0 0 1 0 0
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Negative Examples of w#w

✓ 0 1 0 1 1 # 0 1 0 1 1

✓ 1 1 0 # 1 1 0

✓ #

✓ 1 0 0 1 0 0 # 1 0 0 1 0 0

✗ # 0 # 1 0 # # 0 1 0 #

✗ 0 1 # 1 # 0 0

✗ # 1 1 # 0 # 0

✗ 0 1 # 0 1
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Negative Examples of w#w

✓ 0 1 0 1 1 # 0 1 0 1 1

✓ 1 1 0 # 1 1 0

✓ #

✓ 1 0 0 1 0 0 # 1 0 0 1 0 0

✗ # 0 # 1 0 # # 0 1 0 #

✗ 0 1 # 1 # 0 0

✗ # 1 1 # 0 # 0
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Negative Examples of w#w

✓ 0 1 0 1 1 # 0 1 0 1 1

✗ 0 1 0 1 1 # 0 0 0 1 1

✓ 1 1 0 # 1 1 0

✗ 1 1 0 0 # 1 1 0

✓ 1 0 0 1 0 0 # 1 0 0 1 0 0

✗ 1 0 0 1 0 # 1 0 0 1 0 0
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Sampling Datasets

● Our method only needs two algorithms
a. Sample a positive string with length in the range [nmin, nmax]
b. Membership testing -- is a string in the language?

● Balanced label distribution: 50% positive, 50% negative
● Not specific to any language class
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Negative Sampling

● Pick a length n uniformly from [nmin, nmax]
● Propose random strings, test whether they are in the language, reject positives

○ 50% chance: Generate a random string of symbols of length n
■ Tend to be too easy

○ 50% chance: Generate a positive example of length n, apply K random 
edits to it
■ Adversarial
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Architectures and
Training Objectives

49
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Three Architectures

● Transformer
○ Causally masked (don't attend to later positions)
○ Sinusoidal positional encodings
○ Pre-norm instead of post-norm

● Simple RNN
○ tanh activation
○ learned initial state

● LSTM
○ decoupled input and forget gates
○ learned initial state

Every model has 5 layers and about 64k parameters.
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Transformer

51

0 1 0 1 1 # 0 1 0 1 1BOS

p(w ∈ L)
σ

loss
binary 
cross-entropy
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Simple RNN and LSTM

52

0 1 0 1 1 # 0 1 0 1 1

p(w ∈ L)
σ

loss
binary 
cross-entropy
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Gradient Problems
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0 1 0 1 1 # 0 1 0 1 1

p(w ∈ L)
σ

loss
binary 
cross-entropy
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Language Modeling
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0 1 0 1 1 # 0 1 0 1 1BOS

0 1 0 1 1 # 0 1 0 1 1 EOS

cross-entropy
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Next Symbol Prediction
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0 1 0 1 1 # 0 1 0 1 1BOS

{0, 1, #} {0, 1, #} {0, 1, #} {0, 1, #} {0, 1, #} {0, 1, #} {0} {1} {0} {1} {1} {EOS}
binary 
cross-entropy
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Next Symbol Prediction
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0 1 0 1 1 # 0 1 0 1 1BOS
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Multi-Task Learning

Loss = Rec. Loss + λLM × LM Loss + λNS × NS Loss

● We always include the Rec. Loss term
● We test all 4 combinations of {with, without} × {LM Loss term, NS Loss term}
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Experiments

58
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Dataset Splits

● Training data: 10k examples with lengths in [0, 40]
● Test data: 5,010 examples with lengths in [0, 500]

○ Average of 10 examples per length
○ Emphasis on length generalization -- does it learn the algorithm?

● Two variations for validation data (next slides)
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Testing Expressivity

● Does a parameter setting exist at all?
● Long validation data set: 1k examples with lengths in [0, 80]
● Encourages model to length-generalize during training via

○ learning rate schedule
○ early stopping

● Report max test accuracy of 10 random seeds among all 4 loss functions

60

Test

Validation
Training 40

80

500
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Testing Inductive Bias

● What is the architecture's prior over languages?
● How does the network length-generalize without any hints during training?
● Short validation data: 1k examples with lengths in [0, 40]
● Report mean test accuracy of 10 random seeds of best loss function

61

Test

Validation
Training 40

40

500
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Results

62

RNN and LSTM outperform Transformer; RNN is surprisingly good
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Expressivity Results
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Results
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Consistency in rankings between Inductive Bias and Expressivity
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Results

65

Transformers do well on low-sensitivity and badly on high-sensitivity (Hahn & 
Rofin, 2024)

Regular

Deterministic 
Context-Free
Context-Free

Context-Sensitive

B
ig

ge
r L

an
gu

ag
e 

C
la

ss
es



Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

Low-Sensitivity

66

Even Pairs (begins and ends with same bit)
0 1 0 1 1 0
1 0 1 1

First (begins with 1)
1 0 0 1 0 1
1 1 0 1 1
1 0
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High-Sensitivity

67

Repeat 01 (0 1 repeated any number of times)
0 1 0 1 0 1 0 1
0 1 0 1

Parity (odd number of 1's)
0 1 0 1 1
1 0 1 1
0 0 0 1
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Results

68

Transformers do well on low-sensitivity and badly on high-sensitivity (Hahn & 
Rofin, 2024)
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Results

69

Accuracy ceilings
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Cycle Navigation

70

0

1

23

4



Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

Cycle Navigation

> > > = > < = = > = > > > < < > < > > = < > < = > > < = < = < > < = 0
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> < = = > = = = < < = > = 0
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< = = > < > = > = > < < = < > = > < = < < = > > = = < > = < < < 2
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< = < < > > < 0 < 2
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✓
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✓

✓
✓

✓

✗
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Cycle Navigation

● Increasing model size doesn't help
● Increasing training data size doesn't help
● Increasing adversarial negative examples doesn't help
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Binary Arithmetic

Small digits come first

Addition
0 0 1 0 + 1 1 0 = 1 1 1 0
Multiplication
0 1 0 0 * 0 0 1  = 0 0 0 1
Square Root
0 0 1 = 0 1
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Recognition (Ours) vs. Seq-to-Seq (DeepMind)

● Transformer struggles on Parity
● Their RNN/LSTM solved Cycle Navigation, ours did not
● Our RNN performs better than theirs (slightly different architectures)
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Recognition (Ours) vs. Seq-to-Seq (DeepMind)

Different model rankings on many languages
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Performance vs. Edit Distance
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Performance vs. Length

77

Seq-to-Seq (DeepMind)
w => w

Recognition (Ours)
w#w
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Performance vs. Length
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Which Loss Function Is Best?
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What Did We Learn?

● Transformers, simple RNNs, and LSTMs rank very low in the Chomsky 
hierarchy
○ If true, they cannot make grammaticality judgments with 100% accuracy

● Simple RNNs and LSTMs outperform the transformer
● Using just a simple recognition objective is usually effective; auxiliary training 

objectives help in isolated cases but not uniformly
● Consistency between inductive bias and expressivity
● Results do change from the DeepMind paper

○ e.g., nothing is able to solve Cycle Navigation
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Thank You

Questions?

81
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