Training Neural Networks to Recognize
Formal Languages:
Bridging Theory and Experiments

September 4, 2025
Brian DuSell

”
N2

About Me

e Postdoc at ETH Zurich with Ryan
Cotterell

e Formerly: PhD student at University
of Notre Dame with David Chiang

e Interests
o Natural language processing
o Formal language theory
o Neural networks

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

Basic Research Questions

What can LLMs do?
What can't LLMs do?

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

Published as a conference paper at ICLR 2025

TRAINING NEURAL NETWORKS AS RECOGNIZERS OF
FORMAL LANGUAGES

Alexandra Butoi' Ghazal Khalighinejad®> Anej Svete!

Josef Valvoda® Ryan Cotterell' Brian DuSell

'ETH Ziirich 2Duke University 3University of Copenhagen
{alexandra.butoi, anej.svete, ryan.cotterell, brian.dusell}@inf.ethz.ch
ghazal .khalighinejad@duke.edu jval@di.ku.dk

ABSTRACT

Characterizing the computational power of neural network architectures in terms
of formal language theory remains a crucial line of research, as it describes lower
and upper bounds on the reasoning capabilities of modern Al. However, when em-
pirically testing these bounds, existing work often leaves a discrepancy between
experiments and the formal claims they are meant to support. The problem is that

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

My Collaborators

ol
2oy < ol
53
i
/&

7

Alexandra Butoi Ghazal Khalighinejad Anej Svete

t"‘\) j5\\
LSOO

n .

Josef Valvoda Ryan Cotterell

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

Definition: Alphabet

An alphabet is a non-empty finite set of elements called symbols.

Examples:

e {0,1}

o {0,1,#}

e the set of all Unicode characters

e {above, accept, admire, ..., zebra, zebras, ., ? }

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

Definition: String

A string is finite sequence of symbols from an alphabet.
Examples:

e 01011
e 01011#01011
e the salamanders don't amuse my newt .

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

Definition: Language

A language or formal language is a (possibly infinite) set of strings.

Examples:

o {# 0#0,1#1,00#00,01#01,10#10,11#11, ...}
={w#w |w € {0, 1}" }

e {the salamanders don't amuse my newt .,

our zebra doesn't applaud the unicorn .,
some newt doesn't comfort the ravens . ,

)

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

Membership in a Language

{wi#w |w € {0, 1}*}
v 011#011
X011#010
X #0##10

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

Natural Language as a Formal Language

v/ your orangutans giggle

X orangutans giggle your

v/ your vulture comforts our peacocks by our newts

X peacocks by comforts newts our your our vulture

/' some newts that our zebra amuses wait

X some newts that our zebra amuses waits

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

10

Definition: Recognizer
A recognizer is any computing device that reads a string as input and produces a
decision to accept or reject it as output.

A recognizer recognizes the language of strings that it accepts.

"Recognizer”

/ accept

string —»1 Computer —» or

X reject

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

11

Recognizers

"Recognizer"

"some newts that our

. —>
zebra amuses wait" Computer

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

12

Recognizers

"Recognizer"

"some newts that our

zebra amuses wait Computer

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

13

Recognizers

"Recognizer”

"some newts that our

. —> —>
zebra amuses waits" Computer X

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

14

Chomsky Hierarchy

o

Regular
(Constant Memory)

/

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

15

Chomsky Hierarchy

/ English?
/ C Syntax

o

Regular
(Constant Memory)

>/ E-mail Address Format

/

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

16

Chomsky Hierarchy

-

Context-Free
(Stack Memory)

— |

Regular
(Constant Memory)

English?
>C C Syntax

| — E-mail Address Format

\k

7

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

17

Chomsky Hierarchy

/ Swiss German?
English?
/ Context-Free >(
(Stack Memory) — C Syntax

— |

E-mail Address Format
Regular —

(Constant Memory)

> 7

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments 18

Chomsky Hierarchy

Swiss German?
/ Context-Sensitive
(Linear Tape Memory) .
__— English?
/ Context-Free >T
(Stack Memory) — C Syntax

____—— E-mail Address Format

Regular 3\/’“
(Constant Memory)

N—

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments 19

Chomsky Hierarchy

Decidable

Context-Sensitive

~

Context-Free
(Stack Memory)

\

Regular
(Constant Memory)

Swiss German?

— English?

__— C Syntax

|___—— E-mail Address Format

\\\k

%)

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments 20

Chomsky Hierarchy

fewer
restrictions
on memory

Decidable

Context-Sensitive

~

Context-Free
(Stack Memory)

\

Regular
(Constant Memory)

Swiss German?

— English?

__— C Syntax

|___—— E-mail Address Format

\\\k

%)

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments 21

Definition: Class

A class or language class is a (possibly infinite) set of languages.

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

22

Chomsky Hierarchy

777

/ Recognizable by
LLM/Transformer

~

/

Decidable

Context-Sensitive

~

Context-Free

/

Regular

— |

Swiss German?

— English?

__— C Syntax

|___—— E-mail Address Format

\\\k

%)

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments 23

Transformer Language Model

above 0.01 0.03 0.00 0.02 0.01 0.03 0.00 0.02 0.01
accept 0.02 0.01 0.01 0.00 0.02 0.01 0.01 0.00 0.00
amuses 0.00 0.02 0.01 0.01 0.00 0.56 0.02 0.01 0.01

EOS 0.01 0.00 0.01 0.02 0.01 0.00 0.01 0.02 0.96

TN L

BOS some newts that our zebraamuses wait

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments 24

Transformer Recognizer

0.97

BOS some newts that our zebraamuses wait

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

probability of
acceptance

25

Chomsky Hierarchy

777

/ Recognizable by \

Transformer

/

Decidable

Context-Sensitive

~

Context-Free

/

Regular

— |

Swiss German?

— English?

__— C Syntax

|___—— E-mail Address Format

\\\k

%)

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments 26

Chomsky Hierarchy

—

/ Recognizable by x\-

Transformer

o

Decidable

Context-Sensitive

Context-Free

Yang et al. (2024)

/ Star-Free \

Swiss German?

— English?

__— C Syntax

|___—— E-mail Address Format

N

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments 27

Chomsky Hierarchy

/ Decidable Swiss German?
Context-Sensitive _
/ __— English?

Context-Free |
| — C Syntax
______ N . |
/ Recognizable by \ ---- /_/_ _____ Regular 3(______,/ E-mail Address Format
Transformer | | | | [— ~===-.
e hard attention /" Star-Free \

strict masking
e no positional
encodings

- Yang et al. (2024) /\\ KK j////

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments 28

Transformer Expressivity

ﬁecognizable by Simplified Transformer\

/ Recognizable by Real Transformer \

/

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

29

Transformer Expressivity

ﬁecognizable by Simplified Transformer\

/ Recognizable by Real Transformer \
ﬂ?eachable by Gradient DescerN

——————————————————

- Often Reached by ™,
Gradient Descent

—— o e e e e o e

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

30

Purpose of This Work

How Do We Test Hypotheses
about Neural Networks as
Recognizers?

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

31

Our Solution

Train Neural Networks as
Recognizers

(Binary Classifiers of Strings)

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

32

Basic Approach

e Get a dataset of strings labeled accept (1) or reject (0)

e The network outputs a probability of acceptance

e Use an objective function that maximizes the accept probability for accept and
minimizes it for reject

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

33

Disconnect between Experiments and Theory

e Generating negative examples (strings labeled reject) is hard
e Positive-only tasks
o Language modeling
o Sequence-to-sequence transduction
e (Can't convert a neural LM to a recognizer
o How do you distinguish between probability of EOS that is just close to 0
or should be exactly 07

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

34

Published as a conference paper at ICLR 2023

NEURAL NETWORKS AND THE CHOMSKY HIERARCHY

Grégoire Delétang*! Anian Ruoss*!' Jordi Grau-Moya' Tim Genewein' Li Kevin Wenliang'

Elliot Catt' Chris Cundy'? Marcus Hutter' Shane Legg' Joel Veness' Pedro A. Ortega’

ABSTRACT

Reliable generalization lies at the heart of safe ML and Al. However, understanding
when and how neural networks generalize remains one of the most important
unsolved problems in the field. In this work, we conduct an extensive empirical
study (20 910 models, 15 tasks) to investigate whether insights from the theory of
computation can predict the limits of neural network generalization in practice.
We demonstrate that grouping tasks according to the Chomsky hierarchy allows
us to forecast whether certain architectures will be able to generalize to out-of-
distribution inputs. This includes negative results where even extensive amounts
of data and training time never lead to any non-trivial generalization, despite
models havin sufﬁc1ent capacity to fit the training data perfectlv. Our results

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

35

Bridging the Gap

Languages

Theory

String-to-String Functions

Experiments

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

36

Bridging the Gap

Languages String-to-String Functions

Not Fully Worked Out
Theory >

Experiments

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

Bridging the Gap

Languages

Theory

This Talk

String-to-String Functions

Experiments

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

38

Research Questions

e How powerful is each NN architecture?
e Do our results change if we do recognition instead of string-to-string?
e \What training objectives work best?

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

39

Languages

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

40

Languages

Table 1: Formal languages tested in this paper and included in FLaRe. For each language, we show
the language class that it belongs to: regular (R), deterministic context-free (DCF), context-free
(CF), or context-sensitive (CS). Each language does not belong to the previous language classes.
Let ¢, (w) be the number of times substring u occurs in w, let w;_,, be w with its i™ symbol
replaced with a, and let () be the little-endian binary encoding of € Z>(. See App. E for details.

Class Language Description Example String
R Even Pairs {w € {0,1}" | cor(w) + cro(w) is even} 210110
= {aua |a € {0,1},u € {0,1}"} U{e, 0,1}
Repeat 01 {(01)" | n >0} 010101
Parity {w e {0,1}" | &1 (w) is odd} 11011001
Cycle Navigation A sequence of left (<), right (>), stay (=) moves on a 5- >>=<>2
position cycle, then the final position (0-indexed).
Modular Arithmetic Expression involving {+, —, x} and {0,...,4}, then = 1-3x2=1
the result mod 5. No operator precedence.
Dyck-(2, 3) Strings of balanced brackets with 2 bracket typesanda [([1)JO
. maximum depth of 3.
Bigger Language First {1w | we {e,1}"} 100010
Classes DCF Majority {w e {0,1}" | &1(w) > co(w)} 101101
Stack Manipulation A stack from bottom to top, a sequence of push and pop ~ @11[POP]=10
operations, and the resulting stack from top to bottom.
Marked Reversal {wHw® | w € {0,1}*} 001#100
CF Unmarked Reversal {ww® | w e {0,1}"} 001100
CS Marked Copy {whw | w € {0,1}"} 001#001
Missing Duplicate {(ww)is_ | w e {0,1}",1 <1 < 2Jw|, (ww); =1} 1_011101
v Odds First {ai1by ---anbnattay - --anaby --- by, | 01010=00011
n > 0;ai,b; € {0,1};a € {0,1,2}}
Binary Addition {(z)0'+(y)0’=(x + y)0* | x,y,i,j,k € Z>0} 110+01=10100
Binary Multiplication {(z)0*x(y)@’=(zy)0" | z,y,1i,j. k € Z>o} 110x0100=011

Compute Sqrt
Bucket Sort

{(@)0'=((VZ|)07 | 2,1,] € Z3o)
Sequence of integers in {1,...,5}, then # and the
sorted sequence.

01010=1100
45134#13445

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

Dataset Generation

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

42

Positive examples of w#w

v/ 01011#0101 1

v 110#110
v #
v 100100#100100

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

43

Negative Examples of w#w

v 01011#0101 1
v 110#110

v #

v 100100#100100
X #0#10##010#
XO01#1#00

X #11#0#0
01404

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

44

Negative Examples of w#w

v 01011#0101 1
v 110#110

v #

v 100100#100100
X #0#10##010#
XO01#1#00

X #11#0#0

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

45

Negative Examples of w#w

v 01011#0101 1
X01011#0001 1

v 110#110

X 1100#110

v/ 100100#100100
X10010#100100

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

46

Sampling Datasets

e Our method only needs two algorithms
a. Sample a positive string with length in the range [n
b. Membership testing -- is a string in the language?
e Balanced label distribution: 50% positive, 50% negative
e Not specific to any language class

N]
min max

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

47

Negative Sampling

e Pick a length n uniformly from[n_ .. n_]
e Propose random strings, test whether they are in the language, reject positives
o 50% chance: Generate a random string of symbols of length n
m Tend to be too easy
o 50% chance: Generate a positive example of length n, apply K random
edits to it
m Adversarial

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

48

Architectures and
Training Objectives

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

49

Three Architectures

e Transformer
o Causally masked (don't attend to later positions)
o Sinusoidal positional encodings
o Pre-norm instead of post-norm
e Simple RNN
o tanh activation
o learned initial state
o LSTM
o decoupled input and forget gates
o learned initial state

Every model has 5 layers and about 64k parameters.

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

Transformer

THEE

BOS %) 1 %) 1 1 # %) 1 %) 1

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

loss

1

binary
cross-entropy

p(w € L)

0)

51

Simple RNN and LSTM

loss
T binary

cross-entropy

p(w € L)

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

52

Gradient Problems

loss
T binary

cross-entropy

p(w € L)

1T O

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

53

Language Modeling

9 1 0 1 1 # 0 1 0 1 1 EOS

cross-entropy

e — :/7/
————

e ——
e e ——— —
— —— —

BOS %) 1 %) 1 1 # %) 1 0 1 1

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments 54

Next Symbol Prediction

{0,1,#}{0,1,#}{0,1,#}{0,1,#}{0, 1, #}{0, 1, #} {0} {1} {0} {1} {1 {EOS}
binary
cross-entropy

—

e —————
/_//-/fé'?_//

BOS %) 1 %) 1 1 # %) 1 %) 1 1

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments 55

Next Symbol Prediction

0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.01 0.99 0.01 0.01 0.01
0.99 0.99 0.99 0.99 0.99 0.99 0.01 0.99 0.01 0.99 0.99 0.01
0.99 0.99 0.99 0.99 0.99 0.99 0.01 0.01 0.01 0.01 0.01 0.01

Eos 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.99
binary
cross-entropy

H RO

————

LLI LI ITTTT

%?—_?//

BOS %) 1 %) 1 1 # %) 1 %) 1 1

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments 56

Multi-Task Learning

Loss = Rec. Loss +)\LM x LM Loss +)\NS x NS Loss

e \We always include the Rec. Loss term
e We test all 4 combinations of {with, without} x {LM Loss term, NS Loss term}

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

o7

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

58

Dataset Splits

e Training data: 10k examples with lengths in [0, 40]
e Test data: 5,010 examples with lengths in [0, 500]

o Average of 10 examples per length

o Emphasis on length generalization -- does it learn the algorithm?
e Two variations for validation data (next slides)

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

59

Testing Expressivity

e Does a parameter setting exist at all?
e Long validation data set: 1k examples with lengths in [0, 80]
e Encourages model to length-generalize during training via
o learning rate schedule
o early stopping
e Report max test accuracy of 10 random seeds among all 4 loss functions

Training 40

Validation msess—— 80

Test

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

500

60

Testing Inductive Bias

What is the architecture's prior over languages?

How does the network length-generalize without any hints during training?
Short validation data: 1k examples with lengths in [0, 40]

Report mean test accuracy of 10 random seeds of best loss function

Training 40

Validation s 40

Test

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

500

61

Bigger Language

Results

RNN and LSTM outperform Transformer; RNN is surprisingly good

Inductive Bias Expressivity
Language & RNN LSTM Tf RNN LSTM
/~ Even Pairs 099,001 0.60+020 0.831020 1.00 1.00 1.00
Repeat 01 0.723&0.()9 0-97i0.()7 0.97j:()_()7 0.86 1.00 1.00
Parity 0.56+003 0.714024 0901020 0.60 1.00 1.00
RegLIIar < CyClC Navigation 0.84:t()_()5 0.93:}:()_()1 0.902{:().()4 0.93 0.93 0.93
Modular Arithmetic 0.691011 1.001000 0981003 0.88 1.00 1.00
$ Dyck-(2, 3) 0.701009 0951005 0911010 0.82 1.00 0.98
% _ First 098004 0.80+024 094014 1.00 1.00 1.00
@© Deterministic Majority 09741004 0904003 0.95+004 1.00 0.95 1.00
O Context-Free < Stack Manipulation 0.66+014 084+016 0.751017 0.87 0.93 0.91
Marked Reversal 0641012 0.704018 074017 0.87 095 0.95
Context-Free -< Unmarked Reversal 0.58+4003 0.72+008 0.761001 0.63 0.81 0.88
f Marked COpy 0.631().11 0.76i(),15 0.69313()_15 0.86 0.95 0.95
v Missing Duplicate 0.661()_()8 0.82:t()_1() 0.85:1:()_()7 0.86 0.95 0.94
Odds First 0.591011 0.791015 0.671014 0.86 0.95 0.96
Context-Sensitive < Binary Addition 0.64+013 0.741012 0741012 0.88 092 0.92
Binary Multiplication 0.70+011 0.74+013 0.78+4012 092 0.92 0.92
Compute Sqrt 0.67+010 0.78+012 0.841007 086 0.89 0.89
. Bucket Sort 0-63:t().08 0.84:}:0()9 0.69:}:()_13 0.88 0.96 0.83

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

62

Expressivity R

esults

a

0G0)

O OO0

[

CF O\

O

f

DCF
O 0O

R
® OO0

L

OOOOJJ

p

CS
00O

O O0O0

\

“

CF
O

>

(

DCF
O OO

\

R
00

L

y

CS
0 O

O O00O0

\

/

CF
©)

o

(

DCF
® OO

\

R
00

O‘..JJ

kLOOOQ

J

(a) Transformer (b) Simple RNN (c) LSTM

Figure 1: Summary of our empirical expressivity results. Dots represent languages, which are listed
in Table 1. A filled dot means that the architecture exhibits perfect length generalization (see Table 2
under “Expressivity”). R = regular, DCF = deterministic context-free, CF = context-free, CS =
context-sensitive. All architectures are limited to regular languages and the DCF language Majority.
The transformer is strictly less expressive than the RNN/LSTM on the languages we tested.

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

63

Results

Consistency in rankings between Inductive Bias and Expressivity

Regular <

.
Deterministic
Context-Free
Context-Free <_
r

Bigger Language
Classes

\/

Context-Sensitive <

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

Inductive Bias Expressivity
Language Tf RNN LSTM A B g RNN LSTM
Even Pairs 0.99. 001 0.60+020 0.83:1022 1.00 1.00 1.00
Repeat 01 0.721000 0971007 0971007 0.86 1.00 1.00
Parity 0.56+003 0.711024 090020 0.60 1.00 1.00
Cycle Navigation 08441005 0931001 0901904 093 0.93 0.93
Modular Arithmetic 0.691011 1.001000 0.98+003 0.88 1.00 1.00
Dyck-(2, 3) 0.701000 0951005 0911010 0.82 1.00 0.98
First 098,004 0.801024 094014 1.00 1.00 1.00
Majority 0.97 1004 0904003 0.95+004 1.00 0.95 1.00
Stack Manipulation 0.661014 0841016 0.751017 0.87 0.93 0.91
Marked Reversal 0641012 0.701018 0.741017 0.87 0.95 0.95
Unmarked Reversal 0.58+0.03 0.63 0.81 0.88

Binary Multiplication

g Bucke Srt

0.631008 0.84.000

Results

Transformers do well on low-sensitivity and badly on high-sensitivity (Hahn &
Rofin, 2024)

Inductive Bias Expressivity

Language B RNN LSTM Tf RNN LSTM
/" | Even Pairs 0.99_ 0.60+020 0.83+0,> 1.00 1.00 1.00
Repeat 01 0.721009 0971007 0971007 0.86 1.00 1.00
o 0.5 .60 1.00 1.00

(®)) ReglJIar '< yClC Navigation 0.84 105 J340.01 0.900.04 . 5 A

g Modular Arithmetic 0.691011 1.001000 0981003 0.88 1.00 1.00
O) $ Dka-(Q, 3) 0.7020_()9 0.9520_()5 0.91;0,10 0.82 1.00 0.98
% 9) \ First 0.&0,04 0.8020_24 0.94_:t(),14 1.00 1.0(_) 1.00
— © Deterministic Majority 0.97 004 0901003 0951004 1.00 0.95 1.00
% @ Context-Free < Stack Manipulation 0.661014 0841016 0.751017 0.87 0.93 0.91
3 Marked Reversal 0.641012 0.70+018 0.741017 0.87 0.95 0.95
o0 Context-Free <<_ Unmarked Reversal ~ 0.58+003 0.72400s 0.76:001 0.63 081 0.88
~~ Marked Copy 0.631011 0.761015 0.691015 0.86 0.95 0.95
v Missing Duplicate 0.66+00s 0.82+1010 0.851007 0.86 0.95 0.94
Odds First 0.594011 0.79+015 0.671014 0.86 0095 0.96
Context-Sensitive < Binary Addition 0.64+013 0.741012 0741012 0.88 092 0.92
Binary Multiplication 0.70+011 0.74+013 0.78+012 092 0.92 0.92
Compute Sql't 0.67+010 0.78+0.12 0.84_(7 0.86 0.89 0.89
_. Bucket Sort 0.631908 0841009 0.694013 0.88 0.96 0.83

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

Low-Sensitivity

Even Pairs (begins and ends with same bit)
010110
1011

First (begins with 1)
100101

11011

10

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

66

High-Sensitivity

Repeat 01 (O 1 repeated any number of times)
01010101
0101

Parity (odd number of 1's)
01011

1011

0001

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

67

Results

Transformers do well on low-sensitivity and badly on high-sensitivity (Hahn &
Rofin, 2024)

Inductive Bias Expressivity

Language B RNN LSTM Tf RNN LSTM
/" | Even Pairs 0.99_ 0.60+020 0.83+0,> 1.00 1.00 1.00
Repeat 01 0.721009 0971007 0971007 0.86 1.00 1.00
o 0.5 .60 1.00 1.00

(®)) ReglJIar '< yClC Navigation 0.84 105 J340.01 0.900.04 . 5 A

g Modular Arithmetic 0.691011 1.001000 0981003 0.88 1.00 1.00
O) $ Dka-(Q, 3) 0.7020_()9 0.9520_()5 0.91;0,10 0.82 1.00 0.98
% 9) \ First 0.&0,04 0.8020_24 0.94_:t(),14 1.00 1.0(_) 1.00
— © Deterministic Majority 0.97 004 0901003 0951004 1.00 0.95 1.00
% @ Context-Free < Stack Manipulation 0.661014 0841016 0.751017 0.87 0.93 0.91
3 Marked Reversal 0.641012 0.70+018 0.741017 0.87 0.95 0.95
o0 Context-Free <<_ Unmarked Reversal ~ 0.58+003 0.72400s 0.76:001 0.63 081 0.88
~~ Marked Copy 0.631011 0.761015 0.691015 0.86 0.95 0.95
v Missing Duplicate 0.66+00s 0.82+1010 0.851007 0.86 0.95 0.94
Odds First 0.594011 0.79+015 0.671014 0.86 0095 0.96
Context-Sensitive < Binary Addition 0.64+013 0.741012 0741012 0.88 092 0.92
Binary Multiplication 0.70+011 0.74+013 0.78+012 092 0.92 0.92
Compute Sql't 0.67+010 0.78+0.12 0.84_(7 0.86 0.89 0.89
_. Bucket Sort 0.631908 0841009 0.694013 0.88 0.96 0.83

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

Bigger Language

Results

Accuracy ceilings

Inductive Bias Expressivity
Language Tf RNN LSTM Tf RNN LSTM
/~ Even Pairs 099001 0.60+020 0.831022 1.00 1.00 1.00
Repeat 01 0.724000 0971007 0971007 0.86 1.00 1.00
Parity 0.56+()Qz O.71+024 0.90-» 0.60 1.00 1.00 |
Regular < [Cycle Navigation 0.84:00s 0.93.00, 0.90.00: 093 093 _ 0.93
Modular Arithmetic 0.69+1011 1.001000 0981003 0.88 1.00 1.00
$ Dyck-(2, 3) 0.70+000 09541005 0911010 0.82 1.00 0.98
9) _ First 098,004 0.801024 094014 1.00 1.00 1.00
®© Deterministic Majority 0.97 004 0.90+003 0.95+004 1.00 0.95 1.00
@) Context-Free < Stack Manipulation 0.66+014 0841016 0.75+017 0.87 093 0.91
Marked Reversal 0641012 0.704018 074017 0.87 095 0.95
Context-Free -< Unmarked Reversal 0.58+4003 0.72+008 0.761001 0.63 0.81 0.88
~~ Marked Copy 0.631011 0.76+015 0.694015 0.86 0.95 0.95
v Missing Duplicate 0.66+00s 0.82+1010 0.851007 0.86 0.95 0.94
Odds First 0.594001 0.794015 0.671054 0.86_ 0.95 0.96
Context-Sensitive < Binary Addition 0.64 0.74+010 0.74.95> 0.88 092 0.92
Binary Multiplication . &
Compute Sqrt 0.671050 0.78:010 0.84.99; 0.86 0.89 0.89
. Bucket Sort 0.63:t()()3 0.84:t()_()9 0.69i()_13 0.88 0.96 0.83

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

69

Cycle Navigation

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

70

Cycle Navigation

/'>>>=><==>=>>><<><>>=<><=>><=<=<><=0
=>>21
><z=z=>=z=z=<<=>=(
So==>><<===<<><3
=><<<=<=<><>>=>>=2=>><<><<4
<==><>=>=><<=<>=><=<K<<=>>==<>=<K<K<?2

1>4022103402>14>=4403><=244-=
>=2>100=<>21<34320=043<242<0=

<=<<>><(0<?2

A™XX>X NNXx \x

<>=<>==<<3

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

71

Cycle Navigation

e |[ncreasing model size doesn't help
e [ncreasing training data size doesn't help
e Increasing adversarial negative examples doesn't help

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

72

Binary Arithmetic

Small digits come first

Addition
0010+110=1110
Multiplication
0100*001 =000"1
Square Root
001=01

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

73

Recognition (Ours) vs. Seq-to-Seq (DeepMind)

e Transformer struggles on Parity
e Their RNN/LSTM solved Cycle Navigation, ours did not
e Our RNN performs better than theirs (slightly different architectures)

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

74

Bigger Language

Recognition (Ours) vs. Seq-to-Seq (DeepMind)

Different model rankings on many languages

Inductive Bias Expressivity
Language & RNN LSTM Tf RNN LSTM
/~ Even Pairs 099001 0.60+020 0.831022 1.00 1.00 1.00
Repeat 01 0.724009 09741007 0.97+007 0.86 1.00 1.00
Parity 0.56+003 0.714024 0901020 0.60 1.00 1.00
RegLIIar < CyClC Navigation 0.84:t()_()5 0.93:}:0.()1 0.90:}:()_()4 0.93 0.93 0.93
Modular Arithmetic 0.691011 1.001000 0.98+003 0.88 1.00 1.00
$ Dka-(Q, 3) 0.70j:()_()() 0-95:t0.05 0.91 +0.10 0.82 1.00 0.98
9) _ First 098,004 0.80+024 0941014 1.00 1.00 1.00
@© Deterministic Majority 09741004 0904003 0.95+004 1.00 0.95 1.00
O Context-Free < Stack Mgnipulation 0.66+014 084+016 0.751017 0.87 0.93 0.91
Marked Reversal 0.6410.12 104018 A410.17 0.87 0.95 0.95
Context-Free '{ Unmarked Reversal D8+40.03 124008 J6+001 0.63 0.81 0.88
f Marked COpy 0.631().11 0.76i()_15 0.69:i:().15 0.86 0.95 0.95
v Missing Duplicate 0-66i().()8 0.82i()_1() 0.85:()_07 086 0.95 094
Odds First 0.594011 0.79+015 0.67+014] 0.86 0.95 0.96
Context-Sensitive < [Binary Addition 0.64+013 0.74+01> 0.74+010 | 0.88 092 0.92
Binary Multiplication 0.70+0.11 0.744013 0.78 1012 | 0.92 0.92 0.92
Compute Sqgrt 0.671010 0.78:01» 0.84 0.86 0.89 0.89
\ Bucket Sort —+0.08 4009 4013 0.88 0.96 0.83

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

75

Performance vs. Edit Distance

i ; 2 3 B i °
Q. 4 + e
o . '
3 9 : 1 > * 1 Incorrect
i 5 T Incorrect B
B | R A S e
G 0 !... * & o0 e o0 (X I J (1] L N () Peeo L] ;. “;00 ® ¢ 0% o0 o 4
0 50 100 150 0 20 40 60 &80 100 120
Edit Distance Edit Distance
(a) Repeat 01 (b) Dyck-(2, 3)

Figure 2: Recognition cross-entropy (lower is better) as a function of edit distance for the trans-
former model shown under “Expressivity” in Table 2, on a separate dataset of 50 negative examples
in the length range [0, 500]. The dashed lines show log 2, the threshold for incorrect predictions.
Despite being trained on a large proportion of negative examples with low edit distance, the trans-
former still struggles on examples that resemble positive examples.

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

76

Performance vs. Length

Seg-to-Seq (DeepMind) Recognition (Ours)
W =>Ww WHW
1.0 1.5 4 i =
—— Transformer \L : : e
0.9 —— RNN s E
o —— Stack-RNN 2 - (- v Sl
E 0.81 ‘ —— Tape-RNN bax! : : T Incorrect
3 | —— LSTM 5 BT ¥ iy v S 7
< el T 0.5 Lo
Wi S Lo
0.5 : L S i e ey A Ay [. | ! S
0 100 200 300 400 500 | | >
Sequence length 0 100 200 300 400 500
: , _ Input Length
(1) Duplicate String (CS)
(I) Marked Copy

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

Performance vs. Length

\L I — Tf . Tt
| | “ e | |
3 . LstM | 1 : LST™M
2 2 - - RNN a ! : RNN
E I 8 l I
= I = '
| E 0.5
U,'] 3 - w T Incorrect U,'] :
$ I @ @ o 1
2 | S
— & l
U I — s
0 A U ¥k I
| | | | | -
‘ | > 1 iy L] | - % >
0 100 200 300 400 500 0 100 200 300 400 500
Input Length Input Length
(b) Repeat 01 (f) Dyck-(2, 3)

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments 78

Which Loss Function Is Best?

Table 3: The best loss functions, corresponding to the accuracy scores reported in Table 2. “R” =
recognition; “LM” = language modeling; “NS” = next symbol prediction. No single loss function
consistently results in the best performance; the most frequent winner is just R.

Inductive Bias

Expressivity

Language Tf RNN LSTM 1§ RNN LSTM
Even Pairs R R+LM+NS R R R+NS R
Repeat 01 R R+NS R R R R
Parity R+NS R+NS R+NS R+NS R+LM R
Cycle Navigation R+LM+NS R R R R R
Modular Arithmetic R R R R+NS R R
Dyck-(2, 3) R+LM R+LM+NS R R+NS R+NS R+NS
First R+NS R+LM R+LM R R R
Majority R+LM R+NS R+NS R+LM R+LM+NS R+LM+NS
Stack Manipulation R R+NS R R+LM+NS R R+LM
Marked Reversal R+NS R+NS R R+LM R+LM R+LM
Unmarked Reversal R R+NS R+NS R R+NS R+NS
Marked Copy R+NS R+LM R R+NS R R
Missing Duplicate R+LM+NS R R R+LM+NS R+LM+NS R+LM
Odds First R R R R+LM+NS R R+LM+NS
Binary Addition R R+NS R R+LM R+NS R+NS
Binary Multiplication R+NS R R+NS R+NS R+LM R+NS
Compute Sqrt R R R R R R
Bucket Sort R R+LM+NS R R+NS R+NS R+LM+NS

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

79

What Did We Learn?

e Transformers, simple RNNs, and LSTMs rank very low in the Chomsky
hierarchy
o If true, they cannot make grammaticality judgments with 100% accuracy
e Simple RNNs and LSTMs outperform the transformer
e Using just a simple recognition objective is usually effective; auxiliary training
objectives help in isolated cases but not uniformly
e Consistency between inductive bias and expressivity
e Results do change from the DeepMind paper
o e.g., nothing is able to solve Cycle Navigation

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

80

Thank You

Questions?

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

81

References

e Alexandra Butoi, Ghazal Khalighinejad, Anej Svete, Josef Valvoda, Ryan Cotterell, Brian DuSell. Training Neural
Networks as Recognizers of Formal Languages. In Proc. ICLR. Singapore, May 2025.

e Andy Yang, David Chiang, Dana Angluin. Masked Hard-Attention Transformers Recognize Exactly the Star-Free
Languages. In Advances in NeurlPS. Vancouver, Canada, December 2024.

e Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt, Chris Cundy,
Marcus Hutter, Shane Legg, Joel Veness, Pedro A Ortega. Neural Networks and the Chomsky Hierarchy. In Proc.
ICLR 2023. Kigali, Rwanda, May 2023.

e Michael Hahn, Mark Rofin. Why are Sensitive Functions Hard for Transformers? In Proc. ACL. Bangkok, Thailand,
Aug 2024.

Training Neural Networks to Recognize Formal Languages: Bridging Theory and Experiments

82

