
Stack Attention
Brian DuSell and David Chiang

April 22nd, 2024
Seminars on Formal Languages and Neural Networks

1

Paper for This Talk

To appear as a spotlight paper

2

Limitations of Transformers

● Cannot recognize the language of balanced brackets (Dyck-2) for arbitrary
lengths and depths (Hahn, 2020)

3

([[[([[((() [[[((()))]]]))]])]] ()]) ((()))
[[([() [(())]])]] [((([[([(([[]]))])]])))]
((([[(((((() ((([[]]))))))))]]))) ([([])])

Limitations of Transformers

4

Recognizable by
Transformers Dyck-2

Dyck-2 with
bounded depth

Natural Language?

Code

Not Recognizable by
Transformers

Self-Attention

5

Scaled Dot-Product Attention Head

whom raisedthe dog that John chased

the girl whom raisedthe dog that John

k

v

k

v

k

v

k

v

k

v

k

vvalues
keys

inputs
t = 4

predictions

Self-Attention

6

Scaled Dot-Product Attention Head

whom raisedthe dog that John chased

the girl whom raisedthe dog that John

q

k

v

k

v

k

v

k

v

k

v

k

vvalues
keys

query

inputs
t = 4

predictions

Self-Attention

7

Scaled Dot-Product Attention Head

whom raisedthe dog that John chased

the girl whom raisedthe dog that John

q

k

v

k

v

k

v

k

v

k

v

k

vvalues
keys

query

inputs
t = 4

predictions

Self-Attention

8

Scaled Dot-Product Attention Head

whom raisedthe dog that John chased

the girl whom raisedthe dog that John

q

k

v

k

v

k

v

k

v

k

v

k

vvalues
keys

query

output

inputs
t = 4

predictions

Recursion

9

saw a man

NOUN PHRASE VERB PHRASE

SENTENCE

the girl

Recursion

10

the girl

NOUN PHRASE VERB PHRASE

SENTENCE

NOUN PHRASE RELATIVE CLAUSE

RELATIVE
PRONOUN

whom

SENTENCE
WITHOUT OBJECT

NOUN PHRASE VERB PHRASE
WITHOUT OBJECT

TRANSITIVE VERB

chased

the dog

saw a man

Recursion

11

the girl

NOUN PHRASE VERB PHRASE

SENTENCE

NOUN PHRASE RELATIVE CLAUSE

RELATIVE
PRONOUN

whom

SENTENCE
WITHOUT OBJECT

NOUN PHRASE VERB PHRASE
WITHOUT OBJECT

TRANSITIVE VERB

chased

the dog

saw a man

Recursion

12

the girl

NOUN PHRASE VERB PHRASE

SENTENCE

NOUN PHRASE RELATIVE CLAUSE

RELATIVE
PRONOUN

whom

SENTENCE
WITHOUT OBJECT

NOUN PHRASE VERB PHRASE
WITHOUT OBJECT

TRANSITIVE VERB

chased

NOUN PHRASE RELATIVE CLAUSE

RELATIVE
PRONOUN

SENTENCE
WITHOUT OBJECT

VERB PHRASE
WITHOUT OBJECT

TRANSITIVE VERB

raised

the dog

that NOUN PHRASE

John

saw a man

Stacks = Syntax

13

the girl

NOUN PHRASE

NOUN PHRASE RELATIVE CLAUSE

RELATIVE
PRONOUN

whom

SENTENCE
WITHOUT OBJECT

NOUN PHRASE VERB PHRASE
WITHOUT OBJECT

TRANSITIVE VERB

chased

NOUN PHRASE RELATIVE CLAUSE

RELATIVE
PRONOUN

SENTENCE
WITHOUT OBJECT

VERB PHRASE
WITHOUT OBJECT

TRANSITIVE VERB

raisedthe dog that

NOUN PHRASE

John saw

VERB PHRASE

TRANSITIVE
VERB

NOUN PHRASE

a man

SENTENCE

the girlst
ac

k

the dog
the girl

John
the dog
the girl

the dog
the girl the girl

push push push pop pop pop

Language Modeling

14

Scaled Dot-Product Attention Head

q

k

v v v

k

v

k

v

k

vvalues
keys

query

output

inputs
t = 6

predictions

k k

the girl whom raisedthe dog that John

whom raisedthe dog that John ?

a cat
a child
the bar
chased
licked
slept

…

5.01%
7.58%
6.12%
0.02%
0.03%
0.02%

Transformers
struggle on this
(Lakretz et al.,
2022)

Language Modeling

15

Scaled Dot-Product Attention Head

q

k

v v v

k

v

k

v

k

vvalues
keys

query

output

inputs
t = 6

predictions

k k

the girl whom raisedthe dog that John

whom raisedthe dog that John ?

a cat
a child
the bar
chased
licked
slept

…

0.03%
0.01%
0.02%
4.35%
5.62%
0.02%

Language Modeling

16

Scaled Dot-Product Attention Head

q

k

v v v

k

v

k

v

k

vvalues
keys

query

output

inputs
t = 6

predictions

k k

the girl whom raisedthe dog that John

whom raisedthe dog that John ?

a cat
a child
the bar
chased
licked
slept

…

0.03%
0.01%
0.02%
4.35%
5.62%
0.02%

the girl the girl the girl

the dog

the girl

the dog

the girl

the dog

John

the girl

the dog

Self-Attention

17

Scaled Dot-Product Attention Head

q

k

v v v

k

v

k

v

k

vvalues
keys

query

output

inputs
t = 6

predictions

k k

the girl whom raisedthe dog that John

whom raisedthe dog that John chased

Our Method: Stack Attention

18

Stack Attention

PUSH
pushed values

actions POPNOOPPUSHNOOPPUSH

the girl the girl the girl

the dog

the girl

the dog

stack

predictions

t = 6

the girl whom the dog that John raised

the girl

the dog

John

the girl

the dog

the girl whom raisedthe dog that John

whom raisedthe dog that John chased

inputs

Our Method: Stack Attention

19

Stack Attention

stack

predictions

t = 6
the girl whom raisedthe dog that John

whom raisedthe dog that John chased

inputs

Our Method: Stack Attention

20

Stack Attention

stack

predictions

t = 6
the girl whom raisedthe dog that John

whom raisedthe dog that John chased

inputs

Our Method: Stack Attention

21

Stack Attention

PUSHactions POPNOOPPUSHNOOPPUSH

stack

predictions

t = 6
the girl whom raisedthe dog that John

whom raisedthe dog that John chased

inputs

Our Method: Stack Attention

22

Stack Attention

PUSH
pushed values

actions POPNOOPPUSHNOOPPUSH

stack

predictions

t = 6

the girl whom the dog that John raised

the girl whom raisedthe dog that John

whom raisedthe dog that John chased

inputs

Our Method: Stack Attention

23

Stack Attention

PUSH
pushed values

actions POPNOOPPUSHNOOPPUSH

stack

predictions

t = 6

the girl whom the dog that John raised

the girl whom raisedthe dog that John

whom raisedthe dog that John chased

inputs

the girl

Our Method: Stack Attention

24

Stack Attention

PUSH
pushed values

actions POPNOOPPUSHNOOPPUSH

stack

predictions

t = 6

the girl whom the dog that John raised

the girl whom raisedthe dog that John

whom raisedthe dog that John chased

inputs

the girl the girl

Our Method: Stack Attention

25

Stack Attention

PUSH
pushed values

actions POPNOOPPUSHNOOPPUSH

stack

predictions

t = 6

the girl whom the dog that John raised

the girl whom raisedthe dog that John

whom raisedthe dog that John chased

inputs

the girl the girl the girl

the dog

Our Method: Stack Attention

26

Stack Attention

PUSH
pushed values

actions POPNOOPPUSHNOOPPUSH

stack

predictions

t = 6

the girl whom the dog that John raised

the girl whom raisedthe dog that John

whom raisedthe dog that John chased

inputs

the girl the girl the girl

the dog

the girl

the dog

Our Method: Stack Attention

27

Stack Attention

PUSH
pushed values

actions POPNOOPPUSHNOOPPUSH

stack

predictions

t = 6

the girl whom the dog that John raised

the girl whom raisedthe dog that John

whom raisedthe dog that John chased

inputs

the girl the girl the girl

the dog

the girl

the dog

the girl

the dog

John

Our Method: Stack Attention

28

Stack Attention

PUSH
pushed values

actions POPNOOPPUSHNOOPPUSH

stack

predictions

t = 6

the girl whom the dog that John raised

the girl whom raisedthe dog that John

whom raisedthe dog that John chased

inputs

the girl the girl the girl

the dog

the girl

the dog

the girl

the dog

John

the girl

the dog

Our Method: Stack Attention

29

Stack Attention

PUSH
pushed values

actions POPNOOPPUSHNOOPPUSH

the girl the girl the girl

the dog

the girl

the dog

stack

predictions

t = 6

the girl whom the dog that John raised

the girl

the dog

John

the girl

the dog

the girl whom raisedthe dog that John

whom raisedthe dog that John chased

inputs

Benefits of This Work

● More expressive transformers
○ Able to recognize all context-free languages with no extra timesteps

● Better language modeling
○ Natural language
○ Context-free languages

30

Answering Two Questions

31

Stack Attention
(This Work)

Multi-Head
Scaled Dot-Product Attention

RNNs + Differentiable Stacks
(Prior Work)

How do we improve
attention for syntax?

How do we connect stacks
to transformers?

● Differentiable stack = attention over partial syntax trees
● Swap standard attention with a differentiable stack

Desiderata

1. No syntactic supervision required
2. Generative (unidirectional, not bidirectional)

Serves as a drop-in replacement for standard transformers.

32

Prior Work on Syntax-Oriented Transformers

● Syntactically supervised
○ Positional encodings (Shiv & Quirk, 2019)
○ Attention masking (Deguchi et al., 2019; Zhang et al., 2020; McDonald & Chiang, 2021;

Sartran et al., 2022)
○ Multi-task learning (Qian et al., 2021)
○ Stack depth-based attention (Murty et al., 2023)

● Unsupervised but bidirectional
○ Structured Attention: projective dependency trees, encoder-only, used for tree transduction

(Kim et al., 2017)
○ Tree Transformer: BERT-style masked language modeling (Wang et al., 2019)
○ R2D2: differentiable CKY, bidirectional language modeling (Hu et al., 2021)

33

Differentiable Stack

● Continuous function that approximates
the behavior of a stack

● Multiple kinds, not just one kind
● Input:

○ Actions: fractional stack action weights
○ Pushed vector associated with push action

● Output:
○ Stack reading: Approximation of new top

stack vector
● Output (stack reading) is differentiable

w.r.t. Input (actions and pushed vector)
● Unsupervised!
● Unidirectional!

34

PUSH POPNOOPPUSHNOOPPUSH

the girl the girl the girl

the dog

the girl

the dog

the girl whom the dog that John raised

the girl

the dog

John

the girl

the dog

Differentiable Stack

● Continuous function that approximates
the behavior of a stack

● Multiple kinds, not just one kind
● Input:

○ Actions: fractional stack action weights
○ Pushed vector associated with push action

● Output:
○ Stack reading: Approximation of new top

stack vector
● Output (stack reading) is differentiable

w.r.t. Input (actions and pushed vector)
● Unsupervised!
● Unidirectional!

35

PUSH POPNOOPPUSHNOOPPUSH

the girl the girl the girl

the dog

the girl

the dog

the girl whom the dog that John raised

the girl

the dog

John

the girl

the dog

gradientgradientgradientgradientgradientgradient

Differentiable Stacks

Two varieties used in this paper:

● Superposition stack (Joulin & Mikolov, 2015)
○ Computationally cheaper
○ Less expressive

● Nondeterministic stack (DuSell & Chiang, 2023)
○ Computationally more expensive
○ Able to recognize all CFLs

Two varieties of stack attention:

● Superposition stack attention
● Nondeterministic stack attention

36

Superposition Stack (Joulin & Mikolov, 2015)

37

Stack elements
are vectors

Vector elements

Superposition Stack (Joulin & Mikolov, 2015)

38

Actions:
Probability distribution over

● push a new vector
● no-op
● pop

push

no-op

pop

t

Superposition Stack (Joulin & Mikolov, 2015)

39

Actions:
Probability distribution over

● push a new vector
● no-op
● pop

push

no-op

pop

t

Superposition Stack (Joulin & Mikolov, 2015)

40

Actions:
Probability distribution over

● push a new vector
● no-op
● pop

push

no-op

pop

overlay and
interpolate

t t+1

Superposition Stack (Joulin & Mikolov, 2015)

41

push

no-op

pop

overlay and
interpolate

Stack
reading

t t+1

Nondeterministic Stack (DuSell & Chiang, 2023)

● Simulates a nondeterministic pushdown automaton (PDA)
● Uses an extension of PDA called the Vector PDA (VPDA)

42

Pushdown Automaton (PDA)

● Q: finite set of states
● Σ: finite alphabet of input symbols
● Γ: finite alphabet of stack symbols

43

Finite state machine

 …
Input sequence

Stack

Q

Γ

Σ

Nondeterministic PDA

44

q

0

⊥

q

0

0

⊥

q

1

0

⊥

r

0

0

⊥

r

1

0

⊥

q

0

⊥

q

1

⊥

r

0

⊥

r

1

⊥

q

⊥

r

⊥

q

⊥

q

1

⊥

r

0

⊥

r

1

⊥

q

0

q

1

r

0

r

1

state

discrete stack

exponential number of configurations
(many configurations not shown)

...

t

t+1

t+2

...

PDA configuration

Nondeterministic PDA

45

q

0

⊥

q

0

0

⊥

q

1

0

⊥

r

0

0

⊥

r

1

0

⊥

q

0

⊥

q

1

⊥

r

0

⊥

r

1

⊥

q

⊥

r

⊥

q

⊥

q

1

⊥

r

0

⊥

r

1

⊥

q

0

q

1

r

0

r

1

...

t

t+1

t+2

...

push transitions

push transitions

● push y on top of x
● replace x with y
● pop x

Transition types

Nondeterministic PDA

46

q

0

⊥

q

0

0

⊥

q

1

0

⊥

r

0

0

⊥

r

1

0

⊥

q

0

⊥

q

1

⊥

r

0

⊥

r

1

⊥

q

⊥

r

⊥

q

⊥

q

1

⊥

r

0

⊥

r

1

⊥

q

0

q

1

r

0

r

1

...

t

t+1

t+2

...

replace transitions

replace transitions

● push y on top of x
● replace x with y
● pop x

Transition types

Nondeterministic PDA

47

q

0

⊥

q

0

0

⊥

q

1

0

⊥

r

0

0

⊥

r

1

0

⊥

q

0

⊥

q

1

⊥

r

0

⊥

r

1

⊥

q

⊥

r

⊥

q

⊥

q

1

⊥

r

0

⊥

r

1

⊥

q

0

q

1

r

0

r

1

...

t

t+1

t+2

...

pop transitions

● push y on top of x
● replace x with y
● pop x

Transition types

Weighted Pushdown Automaton (WPDA)

● Adds a non-negative weight to each transition
● The weight of a run is the product of its transition weights

48

Weighted PDA (WPDA)

49

q

0

⊥

q

0

0

⊥

q

1

0

⊥

r

0

0

⊥

r

1

0

⊥

q

0

⊥

q

1

⊥

r

0

⊥

r

1

⊥

q

⊥

r

⊥

q

⊥

q

1

⊥

r

0

⊥

r

1

⊥

q

0

q

1

r

0

r

1

PDA transition weights

...

t

t+1

t+2

...

Vector PDA (VPDA)

50

q

0

⊥

q

0

0

⊥

q

1

⊥

r

⊥

q

⊥

Vectors attached to stack elements

...

t

t+1

t+2

...

● Purpose of the vector is to transmit information efficiently
● Transitions can be conditioned on discrete symbol but not the

value of the vector (for tractability later)

Differentiable VPDA (dVPDA), aka Nondeterministic Stack

51

q

0

⊥

q

0

0

⊥

q

1

0

⊥

r

0

0

⊥

r

1

0

⊥

q

0

⊥

q

1

⊥

r

0

⊥

r

1

⊥

q

⊥

r

⊥

q

⊥

q

1

⊥

r

0

⊥

r

1

⊥

q

0

q

1

r

0

r

1

Reading: marginal distribution of PDA
states and top stack symbols, where
the result is a weighted sum of the
top vectors

...

t

t+1

t+2

...

Marginalized out

q
⊥

0

1

r

reading vector
(each entry is a weighted

sum of vectors)

Actions: transition weights at each
timestep t

state

to
p

st
ac

k
sy

m
bo

lWeighted
sum

Differentiable VPDA (dVPDA), aka Nondeterministic Stack

● t: current timestep
● r ∈ Q: PDA state
● y ∈ Γ: discrete stack symbol type

52

Efficient Nondeterminism Using Lang’s Algorithm (1974)

53

Nondeterministic Branches of
Computation

● Exponential space
● Exponential time

Weighted Directed Graph
● Cubic time
● Quadratic space

Lang’s dynamic
programming

algorithm

Nondeterministic Stack Attention Recognizes All CFLs

● PDAs in our normal form recognize all CFLs (DuSell & Chiang, 2023)
● VPDAs are a generalization of normal-form PDAs

54

Superposition Is a Special Case of Nondeterminism

55

noop noop noop noop

push
push

push
push

pop pop pop

To
p

of
 s

ta
ck

Time

Superposition Is a Special Case of Nondeterminism

56

noop × noop × noop × noop +
noop × noop × push × pop +
noop × push × pop × noop +
noop × push × noop × pop +
...

noop noop noop noop

push
push

push
push

pop pop pop

To
p

of
 s

ta
ck

Time

Differentiable Stacks as Attention

57

Scaled Dot-Product Attention Differentiable Stack, aka Stack Attention

Serial Time Complexity

58

Parallel Time Complexity

59

Wall-Clock Runtimes

Computational cost on a natural language modeling task

60

Language Modeling on Context-Free Languages

61

Embeddings + Positional Encodings

Standard Attention Layer

Standard Attention Layer

Stack Attention Layer

Standard Attention Layer

Standard Attention Layer

● All transformers have 5 layers
● Stack attention replaces scaled dot-product

attention in the third (middle) layer
● 6 architectures:

{ Transformer, LSTM } ×
{ no stack, superposition, nondeterministic }

Marked Reversal

62

1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 # 0 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0 # 0 1 1 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0
0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 # 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0

Lo
w

er
 is

 b
et

te
r

Learned Stack Actions

63

Unmarked Reversal

64

1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0
0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0

Lo
w

er
 is

 b
et

te
r

Dyck (Balanced Brackets)

65

([[[([[((() [[[((()))]]]))]])]] ()]) ((()))
[[([() [(())]])]] [((([[([(([[]]))])]])))]
((([[(((((() ((([[]]))))))))]]))) ([([])])

Lo
w

er
 is

 b
et

te
r

Learned Stack Actions

66

Hardest CFL (Greibach, 1973)

$,$,),[$$$,(,[;,[,(;[,],;,)($$[,[([],;,[,)],(),[;
,$,[);,[],;,[$)],[[(,;,)[,)]],(,)]],$[$[,],;

,$,;,[((([[]],[;$,),;,[,;,(],(),[,;,]$(],][]))],);
[,$(,][,(]$))]],$[(())(([()],$(,$]$;$(,)(,;],)),;,],(,],;

((,$[](,$);],[,(;,(,)[$)[,;,())],;,[],),;
,$,],;,$,]],[,$($(,;[)(,$[,(),(;$,],)]),;

[)(,$(())(()(,;],)(,$,$,];$,[]))(,(;(,[[,[,],;,]),[;
,$[[((,))[](]]$,;]$,[,;$((,$,)[,],$,);,))][]],]$$;

,$[,;,([(,;$,[(,[$,;)),)]()()),]),]$],;,])([]),$,;,][],;
,$([],;,[(([]),[;,[],;[,)[],;,])[[,;],]],([,$[,;

67

Hardest CFL

68

$,$,),[$$$,(,[;,[,(;[,],;,)($$[,[([],;,[,)],(),[;
,$,[);,[],;,[$)],[[(,;,)[,)]],(,)]],$[$[,],;

,$,;,[((([[]],[;$,),;,[,;,(],(),[,;,]$(],][]))],);

Lo
w

er
 is

 b
et

te
r

Language Modeling on Natural Language

● Perplexity on Penn Treebank
● Each result is best of 20 runs

69

Machine Translation

70

Embeddings + Positional Encodings

Standard Attention Layer

Standard Attention Layer

Stack Attention Layer

Standard Attention Layer

Standard Attention Layer

Embeddings + Positional Encodings

Standard Attention Layer

Standard Attention Layer

Stack Attention Layer

Standard Attention Layer

Standard Attention Layer

Standard Cross-Attention

Encoder Decoder

Machine Translation

● 100k training samples from German-English Europarl v7
● Limited to 150 characters each on source and target side

71

Summary of Contributions

● New self-attention with latent model of syntax
● Two variants: superposition and nondeterministic
● Unsupervised and generative, trainable with standard backprop, can be used

wherever transformers are currently used
● Nondeterministic stack attention can recognize all CFLs
● Nondeterministic stack attention performs best on Hardest CFL and natural

language modeling despite having the fewest parameters

72

Future Work

● Speed up nondeterministic stack attention by parallelizing across timestep
dimension

● Interpretability for nondeterministic stack attention
● Evaluate data efficiency and hierarchical inductive bias

73

References
● Hiroyuki Deguchi, Akihiro Tamura, and Takashi Ninomiya. Dependency-based self-attention for transformer NMT. In Proc. RANLP, pp. 239–246, Varna, Bulgaria,

September 2019. INCOMA Ltd.
● Brian DuSell and David Chiang. The surprising computational power of nondeterministic stack RNNs. In Proc. ICLR, Kigali, Rwanda, May 2023.
● Sheila A. Greibach. A new normal-form theorem for context-free phrase structure grammars. J. ACM, 12(1):42–52, January 1965.
● Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Trans. ACL, 8: 156–171, January 2020.
● Xiang Hu, Haitao Mi, Zujie Wen, Yafang Wang, Yi Su, Jing Zheng, and Gerard de Melo. R2D2: Recursive Transformer based on Differentiable Tree for Interpretable

Hierarchical Language Modeling. In Proc. ACL (Long Papers), pp. 4897–4908, Online, 2021. Association for Computational Linguistics.
● Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented recurrent nets. In Advances in NIPS, volume 28, Montreal, Canada,

December 2015. Curran Associates, Inc.
● Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush. Structured attention networks. In Proc. ICLR, Toulon, France, April 2017.
● Yair Lakretz, Théo Desbordes, Dieuwke Hupkes, and Stanislas Dehaene. Can Transformers Process Recursive Nested Constructions, Like Humans?. In Proc.

COLING, pp. 3226–3232, Gyeongju, Republic of Korea, 2022. International Committee on Computational Linguistics.
● Colin McDonald and David Chiang. Syntax-based attention masking for neural machine translation. In Proc. NAACL: Student Research Workshop, pp. 47–52,

Online, June 2021. Association for Computational Linguistics.
● Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and Christopher Manning. Pushdown layers: Encoding recursive structure in transformer language models. In

Proc. EMNLP, pp. 3233–3247, Singapore, December 2023. Association for Computational Linguistics.
● Peng Qian, Tahira Naseem, Roger Levy, and Ramon Fernandez Astudillo. Structural guidance for transformer language models. In Proc. ACL-IJCNLP (Long

Papers), pp. 3735–3745, Online, August 2021. Association for Computational Linguistics.
● Laurent Sartran, Samuel Barrett, Adhiguna Kuncoro, Miloš Stanojević, Phil Blunsom, and Chris Dyer. Transformer grammars: Augmenting transformer language

models with syntactic inductive biases at scale. Trans. ACL, 10:1423–1439, December 2022.
● Vighnesh Shiv and Chris Quirk. Novel positional encodings to enable tree-based transformers. In Advances in NeurIPS, volume 32, Vancouver, Canada, 2019.

Curran Associates, Inc.
● Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen. Tree transformer: Integrating tree structures into self-attention. In Proc. EMNLP-IJCNLP, pp. 1061–1070, Hong

Kong, China, November 2019. Association for Computational Linguistics.
● Zhuosheng Zhang, Yuwei Wu, Junru Zhou, Sufeng Duan, Hai Zhao, and Rui Wang. SG-Net: Syntax-guided machine reading comprehension. In Proc. AAAI, New

York, New York, USA, February 2020.

74

Thank You!

Questions?

75

Paper Code

