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Paper for This Talk

To appear as a spotlight paper
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Limitations of Transformers

● Cannot recognize the language of balanced brackets (Dyck-2) for arbitrary 
lengths and depths (Hahn, 2020)
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Limitations of Transformers
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Stacks = Syntax
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Language Modeling
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Our Method: Stack Attention
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Benefits of This Work

● More expressive transformers
○ Able to recognize all context-free languages with no extra timesteps

● Better language modeling
○ Natural language
○ Context-free languages
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Answering Two Questions
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Stack Attention
(This Work)

Multi-Head
Scaled Dot-Product Attention

RNNs + Differentiable Stacks
(Prior Work)

How do we improve 
attention for syntax?

How do we connect stacks 
to transformers?

● Differentiable stack = attention over partial syntax trees
● Swap standard attention with a differentiable stack



Desiderata

1. No syntactic supervision required
2. Generative (unidirectional, not bidirectional)

Serves as a drop-in replacement for standard transformers.
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Prior Work on Syntax-Oriented Transformers

● Syntactically supervised
○ Positional encodings (Shiv & Quirk, 2019)
○ Attention masking (Deguchi et al., 2019; Zhang et al., 2020; McDonald & Chiang, 2021; 

Sartran et al., 2022)
○ Multi-task learning (Qian et al., 2021)
○ Stack depth-based attention (Murty et al., 2023)

● Unsupervised but bidirectional
○ Structured Attention: projective dependency trees, encoder-only, used for tree transduction 

(Kim et al., 2017)
○ Tree Transformer: BERT-style masked language modeling (Wang et al., 2019)
○ R2D2: differentiable CKY, bidirectional language modeling (Hu et al., 2021)
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Differentiable Stack

● Continuous function that approximates 
the behavior of a stack

● Multiple kinds, not just one kind
● Input:

○ Actions: fractional stack action weights
○ Pushed vector associated with push action

● Output:
○ Stack reading: Approximation of new top 

stack vector
● Output (stack reading) is differentiable 

w.r.t. Input (actions and pushed vector)
● Unsupervised!
● Unidirectional!
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Differentiable Stacks

Two varieties used in this paper:

● Superposition stack (Joulin & Mikolov, 2015)
○ Computationally cheaper
○ Less expressive

● Nondeterministic stack (DuSell & Chiang, 2023)
○ Computationally more expensive
○ Able to recognize all CFLs

Two varieties of stack attention:

● Superposition stack attention
● Nondeterministic stack attention
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Superposition Stack (Joulin & Mikolov, 2015)
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Superposition Stack (Joulin & Mikolov, 2015)
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Superposition Stack (Joulin & Mikolov, 2015)
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Superposition Stack (Joulin & Mikolov, 2015)
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Nondeterministic Stack (DuSell & Chiang, 2023)

● Simulates a nondeterministic pushdown automaton (PDA)
● Uses an extension of PDA called the Vector PDA (VPDA)
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Pushdown Automaton (PDA)

● Q: finite set of states
● Σ: finite alphabet of input symbols
● Γ: finite alphabet of stack symbols
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Nondeterministic PDA
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Nondeterministic PDA
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Nondeterministic PDA
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Nondeterministic PDA
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Weighted Pushdown Automaton (WPDA)

● Adds a non-negative weight to each transition
● The weight of a run is the product of its transition weights
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Weighted PDA (WPDA)
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Vector PDA (VPDA)
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Differentiable VPDA (dVPDA), aka Nondeterministic Stack
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Differentiable VPDA (dVPDA), aka Nondeterministic Stack

● t: current timestep
● r ∈ Q: PDA state
● y ∈ Γ: discrete stack symbol type
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Efficient Nondeterminism Using Lang’s Algorithm (1974)
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Nondeterministic Branches of 
Computation

● Exponential space
● Exponential time

Weighted Directed Graph
● Cubic time
● Quadratic space

Lang’s dynamic 
programming 

algorithm



Nondeterministic Stack Attention Recognizes All CFLs

● PDAs in our normal form recognize all CFLs (DuSell & Chiang, 2023)
● VPDAs are a generalization of normal-form PDAs
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Superposition Is a Special Case of Nondeterminism
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Superposition Is a Special Case of Nondeterminism
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Differentiable Stacks as Attention
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Scaled Dot-Product Attention Differentiable Stack, aka Stack Attention



Serial Time Complexity
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Parallel Time Complexity
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Wall-Clock Runtimes

Computational cost on a natural language modeling task
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Language Modeling on Context-Free Languages
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Embeddings + Positional Encodings
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Standard Attention Layer

Standard Attention Layer

● All transformers have 5 layers
● Stack attention replaces scaled dot-product 

attention in the third (middle) layer
● 6 architectures:

{ Transformer, LSTM } ×
{ no stack, superposition, nondeterministic }



Marked Reversal
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Learned Stack Actions
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Unmarked Reversal
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Dyck (Balanced Brackets)
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Learned Stack Actions
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Hardest CFL (Greibach, 1973)
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Hardest CFL
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Language Modeling on Natural Language

● Perplexity on Penn Treebank
● Each result is best of 20 runs
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Machine Translation
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Machine Translation

● 100k training samples from German-English Europarl v7
● Limited to 150 characters each on source and target side
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Summary of Contributions

● New self-attention with latent model of syntax
● Two variants: superposition and nondeterministic
● Unsupervised and generative, trainable with standard backprop, can be used 

wherever transformers are currently used
● Nondeterministic stack attention can recognize all CFLs
● Nondeterministic stack attention performs best on Hardest CFL and natural 

language modeling despite having the fewest parameters
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Future Work

● Speed up nondeterministic stack attention by parallelizing across timestep 
dimension

● Interpretability for nondeterministic stack attention
● Evaluate data efficiency and hierarchical inductive bias
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