Stack Attention: Improving the Ability of Transformers to Model Hierarchical Patterns Brian DuSell and David Chiang

An Attention Mechanism for Recursive Syntax

outputs -Standard attention doesn't have a good way of dealing with recursion. Two examples: • Theoretical: Can't model balanced layer outputs are top stack ~ brackets (under certain assumptions) elements (Hahn, 2020) pushed values whom • Empirical: Brittle on center embedding noop stack actions (Lakretz et al., 2022) The keys that the man near the cabinet holds are ... inputs $---- \rightarrow$ the girl

Our solution: Syntax is deeply connected to stacks, so we propose a new self-attention mechanism based on differentiable stacks called stack attention.

Features

- 1. Differentiable end-to-end with standard backprop; no changes to training algorithm required
- 2. Syntactically **unsupervised**; no parse trees required in training data

3. Generative; no future context required, works with standard decoding algorithms No prior work satisfies 2 and 3 at the same time. Stack attention can be used as a drop-in replacement for standard attention.

How Stack Attention Works

Stack Attention = Differentiable Stack = attention over **partial syntax trees**

Two Flavors of Stack Attention

Superposition (Sup)

- Superposition of three stack actions (push, noop, pop)
- Faster
- Less expressive
- Special case of nondeterministic

Nondeterministic (Nd)

- Based on nondeterministic pushdown automata (PDAs)
- Recognizes all context-free languages
- Slower

Serial Time Complexity

Attention	Serial Time
SDPA	$O(n^2)$
Superposition	$O(n^2)$
Nondeterministic	$O(n^3)$

Parallel Time Complexity

Attention	Implemented	Parallel CKY	Theoretical
SDPA	$O(\log n)$	-	_
Superposition	O(n)		$O((\log n)^2)$
Nondeterministic	$O(n^2)$	$O(n \log n)$	$O((\log n)^2)$

Wall-Clock Runtime on Natural Language Modeling

Model	Examples/s	Minutes/Epoch	GPU Memory
Tf	859	0.8	394 MB
Tf+Sup	345	1.9	397 MB
Tf+Nd	27	24.3	1.91 GB

Results

Model
Tf Tf+Sup (Our
Tf+Nd (Ours

Future Work

• Runtime improvements, parallelization across timestep dimension Interpretability of learned syntactic structure • Benchmarking for data efficiency (e.g., BabyLM) and hierarchical inductive bias (e.g., McCoy et al., 2020)

Action