
Stack Attention: Improving the Ability of Transformers
to Model Hierarchical Patterns
Brian DuSell and David Chiang

An Attention Mechanism
for Recursive Syntax
Standard attention doesn't have a good way
of dealing with recursion. Two examples:
● Theoretical: Can't model balanced

brackets (under certain assumptions)
(Hahn, 2020)
[] (() (([(((())))])))

● Empirical: Brittle on center embedding
(Lakretz et al., 2022)

The keys that the man near the cabinet holds are ...
Our solution: Syntax is deeply connected to
stacks, so we propose a new self-attention
mechanism based on differentiable stacks
called stack attention.

Future Work
● Runtime improvements, parallelization

across timestep dimension
● Interpretability of learned syntactic structure
● Benchmarking for data efficiency (e.g.,

BabyLM) and hierarchical inductive bias
(e.g., McCoy et al., 2020)

Two Flavors of Stack Attention

How Stack Attention Works Results

$,$,),[$$$,(,[;,[,(;[,],;,)($$[,[([],;,[,)],(),[;
,$,[);,[],;,[$)],[[(,;,)[,)]],(,)]],$[$[,],;

,$,;,[((([[]],[;$,),;,[,;,(],(),[,;,]$(],][]))],);

C
ro

ss
-E

nt
ro

py
(lo

w
er

 is
 b

et
te

r)

String Length

Stack Attention = Differentiable Stack = attention over partial syntax trees

Superposition (Sup)
● Superposition of three stack

actions (push, noop, pop)
● Faster
● Less expressive
● Special case of nondeterministic

Stack Attention

outputs

the girl the girl the girl

the dog

the girl

the dog

the girl

the dog

John

the girl

the dog

the girl

push

whom

noop

the dog

push

that

noop

John

push

raised

pop

whom the dog that John raised ?

a cat
a child
the bar
chased
licked
slept
…

inputs

stack actions
pushed values

layer outputs
are top stack

elements

Earlier Transformer Layers

whom the dog that John raisedthe girl

Later Transformer Layers

Parallel Time Complexity

Wall-Clock Runtime
on Natural Language Modeling

Serial Time Complexity

Nondeterministic (Nd)
● Based on nondeterministic

pushdown automata (PDAs)
● Recognizes all context-free

languages
● Slower

Learned Stack Actions for
Balancing Brackets

Context-Free Language Modeling

Natural Language Modeling
on Penn Treebank (Perplexity)

([[[([[((() [[[((()))]]]))]])]] ()]) ((()))
[[([() [(())]])]] [((([[([(([[]]))])]])))]
((([[(((((() ((([[]]))))))))]]))) ([([])])

String Length

C
ro

ss
-E

nt
ro

py
(lo

w
er

 is
 b

et
te

r)

Features
1. Differentiable end-to-end with standard

backprop; no changes to training algorithm
required

2. Syntactically unsupervised; no parse trees
required in training data

3. Generative; no future context required,
works with standard decoding algorithms

No prior work satisfies 2 and 3 at the same
time. Stack attention can be used as a
drop-in replacement for standard attention.

