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An Attention Mechanism 
for Recursive Syntax
Standard attention doesn't have a good way 
of dealing with recursion. Two examples:
● Theoretical: Can't model balanced 

brackets (under certain assumptions) 
(Hahn, 2020)
[ ] ( ( ) ( ( [ ( ( ( ( ) ) ) ) ] ) ) )

● Empirical: Brittle on center embedding 
(Lakretz et al., 2022)

The keys that the man near the cabinet holds are ...
Our solution: Syntax is deeply connected to 
stacks, so we propose a new self-attention 
mechanism based on differentiable stacks 
called stack attention.

Future Work
● Runtime improvements, parallelization 

across timestep dimension
● Interpretability of learned syntactic structure
● Benchmarking for data efficiency (e.g., 

BabyLM) and hierarchical inductive bias 
(e.g., McCoy et al., 2020)

Two Flavors of Stack Attention

How Stack Attention Works Results

$,$,),[$$$,(,[;,[,(;[,],;,)($$[,[([],;,[,)],(),[;
,$,[);,[],;,[$)],[[(,;,)[,)]],(,)]],$[$[,],;

,$,;,[((([[]],[;$,),;,[,;,(],(),[,;,]$(],][]))],);
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String Length

Stack Attention = Differentiable Stack = attention over partial syntax trees

Superposition (Sup)
● Superposition of three stack 

actions (push, noop, pop)
● Faster
● Less expressive
● Special case of nondeterministic

Stack Attention
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whom the dog that John raised ?

a cat
a child
the bar
chased
licked
slept
…

inputs

stack actions
pushed values

layer outputs 
are top stack 

elements

Earlier Transformer Layers

whom the dog that John raisedthe girl

Later Transformer Layers

Parallel Time Complexity

Wall-Clock Runtime
on Natural Language Modeling

Serial Time Complexity

Nondeterministic (Nd)
● Based on nondeterministic 

pushdown automata (PDAs)
● Recognizes all context-free 

languages
● Slower

Learned Stack Actions for 
Balancing Brackets

Context-Free Language Modeling

Natural Language Modeling
on Penn Treebank (Perplexity)

( [ [ [ ( [ [ ( ( ( ) [ [ [ ( ( ( ) ) ) ] ] ] ) ) ] ] ) ] ] ( ) ] ) ( ( ( ) ) )
[ [ ( [ ( ) [ ( ( ) ) ] ] ) ] ] [ ( ( ( [ [ ( [ ( ( [ [ ] ] ) ) ] ) ] ] ) ) ) ]
( ( ( [ [ ( ( ( ( ( ( ) ( ( ( [ [ ] ] ) ) ) ) ) ) ) ) ] ] ) ) ) ( [ ( [ ] ) ] )
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Features
1. Differentiable end-to-end with standard 

backprop; no changes to training algorithm 
required

2. Syntactically unsupervised; no parse trees 
required in training data

3. Generative; no future context required, 
works with standard decoding algorithms

No prior work satisfies 2 and 3 at the same 
time. Stack attention can be used as a 
drop-in replacement for standard attention.


